\(\sqrt{\left(2x+1\right)^2+4}\)+3/4y^2-1/+5

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

điều kiện của x,y??

24 tháng 2 2019

\(\sqrt{\left(2x-1\right)^2+4}\ge2.\text{Dấu = xảy ra }\Leftrightarrow x=\frac{1}{2}\)

\(3.\left|4y^2-1\right|\ge0.\text{Dấu = xảy ra }\Leftrightarrow y=\frac{1}{2}\)

\(\sqrt{\left(2x-1\right)^2+4}+3.\left|4y^2-1\right|+5\ge7\)

Dấu = xảy ra khi \(x=y=\frac{1}{2}\)

30 tháng 1 2019

Ta có: \(\hept{\begin{cases}\sqrt{\left(2x+1\right)^2+4}\ge2\\3\left|4y^2-1\right|\ge0\end{cases}}\)

\(\Rightarrow VT\ge2+0+5=7=VP\)

Dấu bằng xảy ra khi: \(\hept{\begin{cases}\left(2x+1\right)^2=0\\4y^2-1=0\end{cases}}\Leftrightarrow\hept{\begin{cases}\left(2x+1\right)^2=0\\\left(2y-1\right)\left(2y+1\right)=0\end{cases}}\Rightarrow\hept{\begin{cases}x=-\frac{1}{2}\\\orbr{\begin{cases}y=\frac{1}{2}\\y=-\frac{1}{2}\end{cases}}\end{cases}}\)

18 tháng 12 2018

a) \(\frac{1}{7}+\frac{6}{7}:\frac{3}{7}\)

\(=\frac{1}{7}+\frac{6}{7}.\frac{7}{3}\) (nhân nghịch đảo)

\(=\frac{1}{7}+2\)

\(=\frac{15}{7}\)

b) \(\frac{4}{5}-\frac{1}{5}.\left(-3\right)\)

\(=\frac{4}{5}-\left(-\frac{3}{5}\right)\)

\(=\frac{7}{5}\)

c) \(\frac{3}{7}+\left(\frac{-5}{2}\right)-\left(-\frac{3}{5}\right)\)

\(=\frac{3}{7}-\left(-\frac{5}{2}\right)+\frac{3}{5}\)

\(=\frac{30}{70}+\frac{175}{70}+\frac{42}{70}\)

\(=\frac{30+175+42}{70}\)

\(=\frac{247}{70}\)

d) viết lại đề hộ mình nhé

9 tháng 10 2016

CÁC câu này cứ bình phương 2 vế là ra ấy mà 

3: |2x-1|=|x+1|

=>2x-1=x+1 hoặc 2x-1=-x-1

=>x=2 hoặc 3x=0

=>x=2 hoặc x=0

4: \(\Leftrightarrow\left\{{}\begin{matrix}x+\sqrt{5}=0\\y-\sqrt{3}=0\\x-y-z=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-\sqrt{5}\\y=\sqrt{3}\\z=x-y=-\sqrt{5}-\sqrt{3}\end{matrix}\right.\)

24 tháng 11 2016

Ta có: (2x+1)^2 lớn hơn hoặc bằng 0 suy ra (2x+1)^2+4 lớn hơn hoặc bằng 0 suy ra căn (2x+1)+4 lớn hơn hoặc bằng 0

Lại có:|4y^2-1|lớn hơn hoặc bằng 0 suy ra 3.|4y^2-1| lớn hơn hoặc bằng 0 

nên GTNN của A =5 khi và chỉ khi (2x+1)^2+4=0 và 4y^2-1=0

Với (2x-1)^2-4=0 suy ra (2x+1)^2=-4 suy ra 2x+2= -2 hoặc 2. Nếu 2x+1=-2 suy ra x=-3/2; nếu 2x+1=2 thì x=1/2

Với 4y^2-1=0 suy ra 4y^2=1 suy ra y^2=1/4 suy ra y=1/2 và y=-1/2

24 tháng 11 2016

giá trị nhỏ nhất là 10 đạt đc khi x = 0,5 và y = 0

g

a.

\(\sqrt{2x+3}=1\)

\(2x+3=1\)

\(2x=1-3\)

\(2x=-2\)

\(x=-\frac{2}{2}\)

\(x=-1\)

b.

\(\left(3x-1\right)^2-25=0\)

\(\left(3x-1\right)^2=25\)

\(\left(3x-1\right)^2=\left(\pm5\right)^2\)

\(3x-1=\pm5\)

TH1:

\(3x-1=5\)

\(3x=5+1\)

\(3x=6\)

\(x=\frac{6}{3}\)

\(x=2\)

TH2:

\(3x-1=-5\)

\(3x=-5+1\)

\(3x=-4\)

\(x=-\frac{4}{3}\)

Vậy \(x=2\) hoặc \(x=-\frac{4}{3}\)

c.

\(\left(2x+4\right)\left(x^2+1\right)\left(x-2\right)=0\)

TH1:

\(2x+4=0\)

\(2x=-4\)

\(x=-\frac{4}{2}\)

\(x=-2\)

TH2:

\(x^2+1=0\)

\(x^2=-1\)

mà \(x^2\ge0\) với mọi x

=> loại

TH3:

\(x-2=0\)

\(x=2\)

Vậy \(x=2\) hoặc \(x=-2\)

20 tháng 7 2016

\(a.\)\(=>2x+3=1\)\(=>2x=-2\)\(=>x=-1\)

\(b.\)\(=>\left(3x-1\right)^2=25\)\(=>\left(3x-1\right)^2=5^2=>3x-1=5=>3x=6=>x=2\)

\(c.\)\(=>2x+4=0\)hoac \(x^2+1=0\)hoac \(x-2=0\)

=>  * 2x=4 => x= 2

     * x^2=-1=> x=-1

     * x = 2

\(=>x\in\left(2;-1\right)\)