K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 6 2017

\(\sqrt{\frac{16}{2-x}}-\sqrt{2-x}< 2\)

Đặt \(\sqrt{2-x}=a\left(0< a< 2\right)\)

\(\Rightarrow\frac{4}{a}-a< 2\)

\(\Leftrightarrow a^2+2a-4>0\)

\(\Leftrightarrow\orbr{\begin{cases}a< -1-\sqrt{5}\\a>\sqrt{5}-1\end{cases}}\)

\(\Rightarrow\sqrt{5}-1< a< 2\)

\(\Rightarrow\sqrt{5}-1< \sqrt{2-x}< 2\)

\(\Rightarrow6-2\sqrt{5}< 2-x< 4\)

\(\Rightarrow2\sqrt{5}-4>x>-2\)

23 tháng 6 2017

Đặt \(\sqrt{2-x}=t\)

=> t>0

Bất phương trình đã cho trở thành: 

\(\sqrt{\frac{16}{t^2}}-t< 2\)

<=> \(\frac{\sqrt{16}}{\sqrt{t}}-t< 2\)

<=> \(\frac{4}{t}-t< 2\)

Vì t > 0 nên nhân cả 2 vế với t được:

\(4-t^2< 2t\)

\(-t^2-2t+4< 0\)

Áp dụng công thức nghiệm thì được:

\(\orbr{\begin{cases}t>-1+\sqrt{5}\left(Thoả.mãn.t>0\right)\\t< -1-\sqrt{5}\left(k.thoa.man.t>0\right)\end{cases}}\)

Vì \(t=\sqrt{2-x}\)

=> \(\sqrt{2-x}>-1+\sqrt{5}\)

\(\Leftrightarrow2-x>1-2\sqrt{5}+5\)

\(\Leftrightarrow-x>5+1-2-2\sqrt{5}\)

\(\Leftrightarrow x< 2\sqrt{5-4}\left(thoa.man0< x< 2\right)\)

13 tháng 3 2020

\(B=\frac{x}{x-16}+\frac{2}{\sqrt{x}-4}+\frac{2}{\sqrt{x}+4}\)

\(=\frac{x}{x-16}+\frac{2\left(\sqrt{x}+4\right)}{\left(\sqrt{x}-4\right)\left(\sqrt{x}+4\right)}+\frac{2\left(\sqrt{x}-4\right)}{\left(\sqrt{x}+4\right)\left(\sqrt{x}-4\right)}\)

\(=\frac{x}{x-16}+\frac{2\sqrt{x}+8}{x-16}+\frac{2\sqrt{x}-8}{x-16}\)

\(=\frac{x+4\sqrt{x}}{x-16}=\frac{\sqrt{x}\left(\sqrt{x}+4\right)}{\left(\sqrt{x}-4\right)\left(\sqrt{x}+4\right)}=\frac{\sqrt{x}}{\sqrt{x}-4}\)

\(A=2\sqrt{12}-\sqrt{75}+\sqrt{\left(\sqrt{3}-2\right)^2}\)

\(=2\sqrt{12}-\sqrt{75}+\left(2-\sqrt{3}\right)\)(vì \(\sqrt{3}< \sqrt{4}=2\))

\(\Rightarrow\frac{1}{2}A=\sqrt{12}-\frac{\sqrt{75}}{2}+1-\frac{\sqrt{3}}{2}\)

\(=\sqrt{12}+1-\frac{\sqrt{3}\left(1+5\right)}{2}=\sqrt{12}-3\sqrt{3}+1\)

\(=\sqrt{3}+1\)

\(B-\frac{1}{2}A=0\Leftrightarrow\frac{\sqrt{x}}{\sqrt{x}-4}=\sqrt{3}+1\)

\(\Leftrightarrow\sqrt{x}=\left(\sqrt{3}+1\right)\left(\sqrt{x}-4\right)\)

\(\Leftrightarrow\sqrt{x}=\sqrt{3x}+\sqrt{x}-4\sqrt{x}-4\)

\(\Leftrightarrow\sqrt{3x}-4\sqrt{x}-4=0\)

\(\Leftrightarrow\sqrt{x}\left(\sqrt{3}-4\right)=4\Leftrightarrow\sqrt{x}=\frac{4}{\sqrt{3}-4}\)

\(\Rightarrow x=\left(\frac{4}{\sqrt{3}-4}\right)^2=\frac{304+128\sqrt{3}}{-173}\)

13 tháng 3 2020

Mù mịt quá, sửa từ dòng 7 từ dưới lên 

\(=-\sqrt{3}+1\)

\(B-\frac{1}{2}A=0\Leftrightarrow\frac{\sqrt{x}}{\sqrt{x}-4}=-\sqrt{3}+1\)

\(\Leftrightarrow\sqrt{x}=\left(\sqrt{x}-4\right)\left(1-\sqrt{3}\right)\)

\(\Leftrightarrow\sqrt{x}=\sqrt{x}-4-\sqrt{3x}+4\sqrt{3}\)

\(\Leftrightarrow-4-\sqrt{3x}+4\sqrt{3}=0\)

\(\Leftrightarrow\sqrt{3x}=4\sqrt{3}-4\)

\(\Leftrightarrow\sqrt{x}=\frac{4\left(\sqrt{3}-1\right)}{\sqrt{3}}\)

\(\Leftrightarrow x=\frac{64-32\sqrt{3}}{3}\)

29 tháng 7 2019

\(a,A=\frac{\sqrt{x}}{\sqrt{x}-2}+\frac{3}{\sqrt{x}+2}-\frac{9\sqrt{x}-10}{x-4}\left(x\ge0;x\ne16\right)\)

\(=\frac{\sqrt{x}\left(\sqrt{x}+2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}+\frac{3\left(\sqrt{x}-2\right)}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}-\frac{9\sqrt{x}-10}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\)

\(=\frac{x+2\sqrt{x}}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}+\frac{3\sqrt{x}-6}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}-\frac{9\sqrt{x}-10}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)

\(=\frac{x+2\sqrt{x}+3\sqrt{x}-6-9\sqrt{x}+10}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)

\(=\frac{x-4\sqrt{x}+4}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}=\frac{\left(\sqrt{x}\right)^2-2.\sqrt{x}.2+2^2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}=\frac{\left(\sqrt{x}-2\right)^2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}=\frac{\sqrt{x}-2}{\sqrt{x}+2}\)

Vây...

\(b,\)Ta có:\(x=4-2\sqrt{3}=\left(1-\sqrt{3}\right)^2\)

Thay \(x=\left(1-\sqrt{3}\right)^2\)vào A ta được:

\(A=\frac{\sqrt{\left(1-\sqrt{3}\right)^2}-2}{\sqrt{\left(1-\sqrt{3}\right)^2}+2}=\frac{\sqrt{3}-1-2}{\sqrt{3}-1+2}=\frac{\sqrt{3}-3}{\sqrt{3}-1}=\frac{-\sqrt{3}\left(\sqrt{3}-1\right)}{\sqrt{3}-1}=-\sqrt{3}\)

AH
Akai Haruma
Giáo viên
16 tháng 7 2020

k) ĐK: $x^2\geq 5$

PT $\Leftrightarrow 2\sqrt{x^2-5}-\frac{1}{3}\sqrt{x^2-5}+\frac{3}{4}\sqrt{x^2-5}-\frac{5}{12}\sqrt{x^2-5}=4$

$\Leftrightarrow 2\sqrt{x^2-5}=4$

$\Leftrightarrow \sqrt{x^2-5}=2$

$\Rightarrow x^2-5=4$

$\Leftrightarrow x^2=9\Rightarrow x=\pm 3$ (đều thỏa mãn)

l) ĐKXĐ: $x\geq -1$

PT $\Leftrightarrow 2\sqrt{x+1}+3\sqrt{x+1}-\sqrt{x+1}=4$

$\Leftrightarrow 4\sqrt{x+1}=4$

$\Leftrightarrow \sqrt{x+1}=1$

$\Rightarrow x+1=1$

$\Rightarrow x=0$

m) 

ĐKXĐ: $x\geq -1$

PT $\Leftrightarrow 4\sqrt{x+1}+2\sqrt{x+1}=16-\sqrt{x+1}+3\sqrt{x+1}$

$\Leftrightarrow 6\sqrt{x+1}=16+2\sqrt{x+1}$

$\Leftrightarrow 4\sqrt{x+1}=16$

$\Leftrightarrow \sqrt{x+1}=4$

$\Rightarrow x=15$ (thỏa mãn)

AH
Akai Haruma
Giáo viên
16 tháng 7 2020

h) 

ĐKXĐ: $x\geq -5$

PT $\Leftrightarrow \sqrt{x+5}=6$

$\Rightarrow x+5=36\Rightarrow x=31$ (thỏa mãn)

i) ĐKXĐ: $x\geq 5$

PT \(\Leftrightarrow \sqrt{x-5}+4\sqrt{x-5}-\sqrt{x-5}=12\)

\(\Leftrightarrow 4\sqrt{x-5}=12\Leftrightarrow \sqrt{x-5}=3\Rightarrow x-5=9\Rightarrow x=14\) (thỏa mãn)

j) 

ĐKXĐ: $x\geq 0$

PT $\Leftrightarrow 3\sqrt{2x}+\sqrt{2x}-6\sqrt{2x}+4=0$

$\Leftrightarrow -2\sqrt{2x}+4=0$

$\Leftrightarrow \sqrt{2x}=2$

$\Rightarrow x=2$ (thỏa mãn)

 

1 tháng 7 2019

a) + \(VT=\sqrt{x^2+2x+10}+x^2+2x+1+7\)

\(=\sqrt{x^2+2x+1}+\left(x+1\right)^2+7>0\forall x\)

=> ptvn

d) ĐK : \(x^2+7x+7\ge0\)

Đặt \(t=\sqrt{x^2+7x+7}\ge0\) \(\Rightarrow t^2=x^2+7x+7\)

\(pt\Leftrightarrow3\left(x^2+7x+7\right)-3+2\sqrt{x^2+7x+7}-2=0\)

\(\Leftrightarrow3t^2+2t-5=0\Leftrightarrow\left(3t+5\right)\left(t-1\right)=0\)

\(\Leftrightarrow t=1\) ( do \(3t+5>0\forall t\ge0\) )

\(\Leftrightarrow x^2+7x+1=0\Leftrightarrow x^2+7x+6=0\)

\(\Leftrightarrow\left(x+1\right)\left(x+6\right)=0\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=-6\end{matrix}\right.\) ( TM )

1 tháng 7 2019

f) ĐK : \(x\ge1\)

Đặt \(\left\{{}\begin{matrix}a=\sqrt{x-1}\ge0\\b=\sqrt{x+3}\ge0\end{matrix}\right.\) thì pt trở thành :

\(a+b-ab-1=0\)

\(\Leftrightarrow\left(a-1\right)-b\left(a-1\right)=0\)

\(\Leftrightarrow\left(1-b\right)\left(a-1\right)=0\Leftrightarrow\left[{}\begin{matrix}a=1\\b=1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\sqrt{x-1}=1\\\sqrt{x+3}=1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\left(TM\right)\\x=-2\left(KTM\right)\end{matrix}\right.\)

17 tháng 1 2022

a) \(A=4\sqrt{x^2+1}-2\sqrt{16\left(x^2+1\right)}+5\sqrt{25\left(x^2+1\right).}\)

\(=4\sqrt{x^2+1}-2.4\sqrt{x^2+1}+5.5\sqrt{x^2+1}\)

\(=4\sqrt{x^2+1}-8\sqrt{x^2+1}+25\sqrt{x^2+1}\)

\(=\left(4-8+25\right)\sqrt{x^2+1}\)

\(=21\sqrt{x^2+1}\)

17 tháng 1 2022

b) \(B=\frac{2}{x+y}\sqrt{\frac{3\left(x+y\right)^2}{4}}\)

\(B=\frac{2}{x+y}.\frac{\sqrt{3}\left(x+y\right)}{2}\)

\(B=\frac{\sqrt{3}\left(x+y\right)}{x+y}\)

\(B=\sqrt{3}\)

13 tháng 1 2016

Bạn chỉ mình cách viết phân số đi, mình làm ra luôn cho. 

31 tháng 1 2016

vào chữ fx rồi chọn biểu tượng phân số là xong