K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 3 2020

\(B=\frac{x}{x-16}+\frac{2}{\sqrt{x}-4}+\frac{2}{\sqrt{x}+4}\)

\(=\frac{x}{x-16}+\frac{2\left(\sqrt{x}+4\right)}{\left(\sqrt{x}-4\right)\left(\sqrt{x}+4\right)}+\frac{2\left(\sqrt{x}-4\right)}{\left(\sqrt{x}+4\right)\left(\sqrt{x}-4\right)}\)

\(=\frac{x}{x-16}+\frac{2\sqrt{x}+8}{x-16}+\frac{2\sqrt{x}-8}{x-16}\)

\(=\frac{x+4\sqrt{x}}{x-16}=\frac{\sqrt{x}\left(\sqrt{x}+4\right)}{\left(\sqrt{x}-4\right)\left(\sqrt{x}+4\right)}=\frac{\sqrt{x}}{\sqrt{x}-4}\)

\(A=2\sqrt{12}-\sqrt{75}+\sqrt{\left(\sqrt{3}-2\right)^2}\)

\(=2\sqrt{12}-\sqrt{75}+\left(2-\sqrt{3}\right)\)(vì \(\sqrt{3}< \sqrt{4}=2\))

\(\Rightarrow\frac{1}{2}A=\sqrt{12}-\frac{\sqrt{75}}{2}+1-\frac{\sqrt{3}}{2}\)

\(=\sqrt{12}+1-\frac{\sqrt{3}\left(1+5\right)}{2}=\sqrt{12}-3\sqrt{3}+1\)

\(=\sqrt{3}+1\)

\(B-\frac{1}{2}A=0\Leftrightarrow\frac{\sqrt{x}}{\sqrt{x}-4}=\sqrt{3}+1\)

\(\Leftrightarrow\sqrt{x}=\left(\sqrt{3}+1\right)\left(\sqrt{x}-4\right)\)

\(\Leftrightarrow\sqrt{x}=\sqrt{3x}+\sqrt{x}-4\sqrt{x}-4\)

\(\Leftrightarrow\sqrt{3x}-4\sqrt{x}-4=0\)

\(\Leftrightarrow\sqrt{x}\left(\sqrt{3}-4\right)=4\Leftrightarrow\sqrt{x}=\frac{4}{\sqrt{3}-4}\)

\(\Rightarrow x=\left(\frac{4}{\sqrt{3}-4}\right)^2=\frac{304+128\sqrt{3}}{-173}\)

13 tháng 3 2020

Mù mịt quá, sửa từ dòng 7 từ dưới lên 

\(=-\sqrt{3}+1\)

\(B-\frac{1}{2}A=0\Leftrightarrow\frac{\sqrt{x}}{\sqrt{x}-4}=-\sqrt{3}+1\)

\(\Leftrightarrow\sqrt{x}=\left(\sqrt{x}-4\right)\left(1-\sqrt{3}\right)\)

\(\Leftrightarrow\sqrt{x}=\sqrt{x}-4-\sqrt{3x}+4\sqrt{3}\)

\(\Leftrightarrow-4-\sqrt{3x}+4\sqrt{3}=0\)

\(\Leftrightarrow\sqrt{3x}=4\sqrt{3}-4\)

\(\Leftrightarrow\sqrt{x}=\frac{4\left(\sqrt{3}-1\right)}{\sqrt{3}}\)

\(\Leftrightarrow x=\frac{64-32\sqrt{3}}{3}\)

14 tháng 10 2021

\(a,A=4\sqrt{3}-5\sqrt{3}+2-\sqrt{3}=2-2\sqrt{3}\\ B=\dfrac{x+2\sqrt{x}+8+2\sqrt{x}-8}{\left(\sqrt{x}-4\right)\left(\sqrt{x}+4\right)}=\dfrac{\sqrt{x}\left(\sqrt{x}+4\right)}{\left(\sqrt{x}-4\right)\left(\sqrt{x}+4\right)}=\dfrac{\sqrt{x}}{\sqrt{x}-4}\\ b,B-\dfrac{1}{2}A=\dfrac{\sqrt{x}}{\sqrt{x}-4}-\dfrac{1}{2}\left(2-2\sqrt{3}\right)=0\\ \Leftrightarrow\dfrac{\sqrt{x}}{\sqrt{x}-4}=1+\sqrt{3}\\ \Leftrightarrow\sqrt{x}=\left(1+\sqrt{3}\right)\left(\sqrt{x}-4\right)\Leftrightarrow\sqrt{x}=\sqrt{x}-4\sqrt{3}+\sqrt{3x}-4\\ \Leftrightarrow\sqrt{3x}=4\sqrt{3}+4\\ \Leftrightarrow\sqrt{x}=\dfrac{4\sqrt{3}+4}{\sqrt{3}}\\ \Leftrightarrow\sqrt{x}=\dfrac{12+4\sqrt{3}}{3}\\ \Leftrightarrow x=\dfrac{192+96\sqrt{3}}{9}=\dfrac{64+32\sqrt{3}}{3}\)

14 tháng 10 2021

\(\dfrac{\sqrt{x}}{\sqrt{x}-4}=1-\sqrt{3}\)
Nhỉ???

21 tháng 6 2019

\(B=\frac{9-x}{\sqrt{x}+3}-\frac{x-6\sqrt{x}+9}{\sqrt{x}-3}-6\)(đk: x ≥ 0 và x ≠ 9)

\(B=\frac{\left(3-\sqrt{x}\right)\left(3+\sqrt{x}\right)}{\sqrt{x}+3}-\frac{\left(\sqrt{x}-3\right)^2}{\sqrt{x}-3}-6\)

\(B=\left(3-\sqrt{x}\right)-\left(\sqrt{x}-3\right)-6\)

\(B=3-\sqrt{x}-\sqrt{x}+3-6\)

\(B=-2\sqrt{x}\)

21 tháng 6 2019

\(A=\frac{\sqrt{x}}{\sqrt{x}-6}-\frac{3}{\sqrt{x}+6}+\frac{x}{36-x}\)(đk: x ≥ 0 và x ≠ 36)

\(=\frac{\sqrt{x}}{\sqrt{x}-6}-\frac{3}{\sqrt{x}+6}-\frac{x}{x-36}\)

\(=\frac{\sqrt{x}}{\sqrt{x}-6}-\frac{3}{\sqrt{x}+6}-\frac{x}{x-36}\)

\(=\frac{\sqrt{x}\left(\sqrt{x}+6\right)-3\left(\sqrt{x-6}\right)-x}{(\sqrt{x}-6)\left(\sqrt{x}+6\right)}\)

\(=\frac{x+6\sqrt{x}-3\sqrt{x}+18-x}{(\sqrt{x}-6)\left(\sqrt{x}+6\right)}\)

\(=\frac{3\sqrt{x}+18}{(\sqrt{x}-6)\left(\sqrt{x}+6\right)}\)

\(=\frac{3(\sqrt{x}+6)}{(\sqrt{x}-6)\left(\sqrt{x}+6\right)}\)

\(=\frac{3}{\sqrt{x}-6}\)

NV
17 tháng 10 2019

Hình như biểu thức và các câu hỏi bên dưới ko liên quan gì đến nhau, bạn ghi nhầm đề bài này sang bài kia thì phải

Bài 1: Cho biểu thức : P = \(\frac{\sqrt{x}}{\sqrt{x}+2}+\frac{-x+x\sqrt{x}+6}{x+\sqrt{x}-2}-\frac{\sqrt{x}+1}{\sqrt{x}-1}\) a) Rút gọn P b) Cho biểu thức \(Q=\frac{\left(x+27\right)P}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-2\right)}\), với x ≥ 0, x ≠ 1, x ≠ 4 Bài 2: Cho biểu thức \(A=\frac{\sqrt{x}+1}{x\sqrt{x}+x+\sqrt{x}}:\frac{-1}{-x^2+\sqrt{x}}\); \(B=x^4-5x^2-8x+2025\). Vs x > 0, x ≠ 1 a) Rút gọn A b) Tìm giá trị của x để biểu thức T = B - 2A2 đạt...
Đọc tiếp

Bài 1: Cho biểu thức : P = \(\frac{\sqrt{x}}{\sqrt{x}+2}+\frac{-x+x\sqrt{x}+6}{x+\sqrt{x}-2}-\frac{\sqrt{x}+1}{\sqrt{x}-1}\)

a) Rút gọn P

b) Cho biểu thức \(Q=\frac{\left(x+27\right)P}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-2\right)}\), với x ≥ 0, x ≠ 1, x ≠ 4

Bài 2: Cho biểu thức \(A=\frac{\sqrt{x}+1}{x\sqrt{x}+x+\sqrt{x}}:\frac{-1}{-x^2+\sqrt{x}}\); \(B=x^4-5x^2-8x+2025\). Vs x > 0, x ≠ 1

a) Rút gọn A

b) Tìm giá trị của x để biểu thức T = B - 2A2 đạt GTNN

Bài 3: Cho biểu thức: \(P=\frac{2\sqrt{x}-1}{\sqrt{x}-1}-\frac{2\sqrt{x}+1}{\sqrt{x}+1}\) vs x ≥ 0, x ≠ 1

a) Rút gọn P

b) Tìm giá trị của x để P = \(\frac{3}{4}\)

c) Tìm GTNN của biểu thức A = \(\left(\sqrt{x}-4\right)\left(x-1\right).P\)

Bài 4: Cho biểu thức: \(A=\left(\frac{x+\sqrt{x}+1}{x+\sqrt{x}-2}-\frac{1}{1-\sqrt{x}}+\frac{1}{\sqrt{x}+2}\right):\frac{1}{x-1}\); vs x ≥ 0, x ≠ 1

a) Rút gọn A

b) Tìm x để \(\frac{1}{A}\) là 1 số tự nhiên

3
17 tháng 8 2019
https://i.imgur.com/17SmMAw.jpg
17 tháng 8 2019

Hỏi đáp ToánHỏi đáp Toán

11 tháng 9 2015

quy đồng lên là xong. Rút gọn nữa

3 tháng 8 2017

1. ĐK \(\hept{\begin{cases}x\ge0\\x\ne4\end{cases}}\)

a. Ta có \(R=\left(\frac{\sqrt{x}}{\sqrt{x}-2}-\frac{4}{\sqrt{x}\left(\sqrt{x}-2\right)}\right).\left(\frac{1}{\sqrt{x}+2}+\frac{4}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\right)\)

\(=\frac{x-4}{\sqrt{x}\left(\sqrt{x}-2\right)}.\frac{\sqrt{x}-2+4}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}=\frac{\sqrt{x}+2}{\sqrt{x}}.\frac{\sqrt{x}+2}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\)

\(=\frac{\sqrt{x}+2}{\sqrt{x}\left(\sqrt{x}-2\right)}\)

b. Với \(x=4+2\sqrt{3}\Rightarrow R=\frac{\sqrt{4+2\sqrt{3}}+2}{\sqrt{4+2\sqrt{3}}\left(\sqrt{4+2\sqrt{3}}-2\right)}=\frac{\sqrt{\left(\sqrt{3}+1\right)^2}+2}{\sqrt{\left(\sqrt{3}+1\right)^2}\left(\sqrt{\left(\sqrt{3}+1\right)^2}-2\right)}\)

\(=\frac{\sqrt{3}+1+2}{\left(\sqrt{3}+1\right)\left(\sqrt{3}-1\right)}=\frac{\sqrt{3}+3}{3-1}=\frac{\sqrt{3}+3}{2}\)

c. Để \(R>0\Rightarrow\frac{\sqrt{x}+2}{\sqrt{x}\left(\sqrt{x}-2\right)}>0\Rightarrow\sqrt{x}-2>0\Rightarrow x>4\)

Vậy \(x>4\)thì \(R>0\)

2. Ta có \(A=6+2\sqrt{2}=6+\sqrt{8};B=9=6+3=6+\sqrt{9}\)

Vì \(\sqrt{8}< \sqrt{9}\Rightarrow A< B\)

3. a. \(VT=\frac{a+b-2\sqrt{ab}}{\sqrt{a}-\sqrt{b}}:\frac{1}{\sqrt{a}+\sqrt{b}}=\frac{\left(\sqrt{a}-\sqrt{b}\right)^2}{\sqrt{a}-\sqrt{b}}.\left(\sqrt{a}+\sqrt{b}\right)\)

\(=\left(\sqrt{a}-\sqrt{b}\right).\left(\sqrt{a}+\sqrt{b}\right)=a-b=VP\left(đpcm\right)\)

b. Ta có \(VT=\left(2+\frac{\sqrt{a}\left(\sqrt{a}-1\right)}{\sqrt{a}-1}\right).\left(2-\frac{\sqrt{a}\left(\sqrt{a}+1\right)}{\sqrt{a}+1}\right)\)

\(=\left(2+\sqrt{a}\right)\left(2-\sqrt{a}\right)=4-a=VP\left(đpcm\right)\)

28 tháng 7 2019

GIÚP MIK VS, MIK CẦN GẤP CỰC :<