K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 8 2022

`\sqrt{9x^2+12x+4}=4`

`<=>\sqrt{(3x+2)^2}=4`

`<=>|3x+2|=4`

`<=>` $\left[\begin{matrix} 3x+2=4\\ 3x+2=-4\end{matrix}\right.$

`<=>` $\left[\begin{matrix} x=\dfrac{2}{3}\\ x=-2\end{matrix}\right.$

1 tháng 8 2022

 anh có thể giái giúp em bài trong trang em được 0 ạ?nếu được em cảm ơn

 

26 tháng 10 2021

6) ĐKXĐ: \(x\le-6\)

\(\sqrt{\left(x+6\right)^2}=-x-6\Leftrightarrow\left|x+6\right|=-x-6\)

\(\Leftrightarrow x+6=x+6\left(đúng\forall x\right)\)

Vậy \(x\le-6\)

7) ĐKXĐ: \(x\ge\dfrac{2}{3}\)

\(pt\Leftrightarrow\sqrt{\left(3x-2\right)^2}=3x-2\Leftrightarrow\left|3x-2\right|=3x-2\)

\(\Leftrightarrow3x-2=3x-2\left(đúng\forall x\right)\)

Vậy \(x\ge\dfrac{2}{3}\)

8) ĐKXĐ: \(x\ge5\)

\(pt\Leftrightarrow\sqrt{\left(4-3x\right)^2}=2x-10\)\(\Leftrightarrow\left|4-3x\right|=2x-10\)

\(\Leftrightarrow4-3x=10-2x\Leftrightarrow x=-6\left(ktm\right)\Leftrightarrow S=\varnothing\)

9) ĐKXĐ: \(x\ge\dfrac{3}{2}\)

\(pt\Leftrightarrow\sqrt{\left(x-3\right)^2}=2x-3\Leftrightarrow\left|x-3\right|=2x-3\)

\(\Leftrightarrow\left[{}\begin{matrix}x-3=2x-3\left(x\ge3\right)\\x-3=3-2x\left(\dfrac{3}{2}\le x< 3\right)\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=0\left(ktm\right)\\x=2\left(tm\right)\end{matrix}\right.\)

 

 

18 tháng 9 2021

\(\Leftrightarrow4-\sqrt{\left(3x-2\right)^2}=1\\ \Leftrightarrow\left|3x-2\right|=3\\ \Leftrightarrow\left[{}\begin{matrix}3x-2=-3,\forall x< \dfrac{2}{3}\\3x-2=3,\forall x\ge\dfrac{2}{3}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{1}{3},\forall x< \dfrac{2}{3}\left(tm\right)\\x=\dfrac{5}{3},\forall x\ge\dfrac{2}{3}\left(tm\right)\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{1}{3}\\x=\dfrac{5}{3}\end{matrix}\right.\)

3 tháng 8 2023

a) \(\sqrt{1-6x+9x^2}=9\)

\(\Leftrightarrow\sqrt{\left(1-3x\right)^2}=9\)

\(\Leftrightarrow\left|1-3x\right|=9\)

\(\Leftrightarrow\left[{}\begin{matrix}1-3x=9\\1-3x=-9\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}3x=1-9\\3x=1+9\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}3x=-8\\3x=10\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{8}{3}\\x=\dfrac{10}{3}\end{matrix}\right.\)

b) \(\sqrt{2x-3}-\sqrt{x+1}=0\) (\(x\ge\dfrac{3}{2}\))

\(\Leftrightarrow\sqrt{2x-3}=\sqrt{x+1}\)

\(\Leftrightarrow2x-3=x+1\)

\(\Leftrightarrow2x-x=1+3\)

\(\Leftrightarrow x=4\left(tm\right)\)

c) \(\sqrt{9x^2+12+4}-2=3x\)

\(\Leftrightarrow\sqrt{\left(3x+2\right)^2}=3x+2\)

\(\Leftrightarrow\left|3x+2\right|=3x+2\)

\(\Leftrightarrow3x+2\ge0\)

\(\Leftrightarrow3x\ge-2\)

\(\Leftrightarrow x\ge-\dfrac{2}{3}\)

a: =>|3x-1|=9

=>3x-1=9 hoặc 3x-1=-9

=>x=-8/3 hoặc x=10/3

b: =>căn 2x-3=căn x+1

=>2x-3=x+1

=>x=4

c: =>|3x+2|=3x+2

=>3x+2>=0

=>x>=-2/3

a: \(\Leftrightarrow\dfrac{1}{3}\sqrt{x-2}-\dfrac{2}{3}\cdot3\sqrt{x-2}+6\cdot\dfrac{\sqrt{x-2}}{9}=-4\)

\(\Leftrightarrow\sqrt{x-2}=4\)

=>x-2=16

hay x=18

b: \(\Leftrightarrow\left|3x+2\right|=4x\)

\(\Leftrightarrow\left[{}\begin{matrix}3x+2=4x\left(x>=-\dfrac{2}{3}\right)\\3x+2=-4x\left(x< -\dfrac{2}{3}\right)\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\left(nhận\right)\\x=-\dfrac{2}{7}\left(nhận\right)\end{matrix}\right.\)

c: \(\Leftrightarrow3\sqrt{x-2}-2\sqrt{x-2}+3\sqrt{x-2}=40\)

\(\Leftrightarrow4\sqrt{x-2}=40\)

=>x-2=100

hay x=102

d: =>5x-6=9

hay x=3

6 tháng 2 2022

\(\dfrac{1}{3}\sqrt{x-2}-\dfrac{2}{3}\sqrt{9x-18}+6\sqrt{\dfrac{x-2}{81}}=-4\) (đk: x≥2)

\(\dfrac{1}{3}\sqrt{x-2}-\dfrac{2}{3}\sqrt{9\left(x-2\right)}+6\sqrt{\dfrac{1}{81}\left(x-2\right)}=-4\)

\(\dfrac{1}{3}\sqrt{x-2}-2\sqrt{x-2}+\dfrac{2}{3}\sqrt{x-2}=-4\)

\(\dfrac{1}{3}\sqrt{x-2}-\dfrac{4}{3}\sqrt{x-2}=-4\)

\(-\sqrt{x-2}=-4\)

\(\sqrt{x-2}=4\)

\(\left|x-2\right|=16\)

\(\Leftrightarrow\left[{}\begin{matrix}x-2=16\\x-2=-16\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=18\left(TM\right)\\x=-14\left(L\right)\end{matrix}\right.\)

17 tháng 9 2021

d. \(\sqrt{9x^2+12x+4}=4\)

<=> \(\sqrt{\left(3x+2\right)^2}=4\)

<=> \(|3x+2|=4\)

<=> \(\left[{}\begin{matrix}3x+2=4\\3x+2=-4\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}3x=2\\3x=-6\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{2}{3}\\x=-2\end{matrix}\right.\)

c: Ta có: \(\dfrac{5\sqrt{x}-2}{8\sqrt{x}+2.5}=\dfrac{2}{7}\)

\(\Leftrightarrow35\sqrt{x}-14=16\sqrt{x}+5\)

\(\Leftrightarrow x=1\)

21 tháng 7 2023

\(A=\sqrt{1-6x+9x^2}+\sqrt{9x^2-12x+4}\)

\(A=\sqrt{1^2-2\cdot3x\cdot1+\left(3x\right)^2}+\sqrt{\left(3x\right)^2-2\cdot2\cdot3x+2^2}\)

\(A=\sqrt{\left(1-3x\right)^2}+\sqrt{\left(3x-2\right)^2}\)

\(A=\left|1-3x\right|+\left|3x-2\right|\)

\(A=\left|1-3x+3x-2\right|\)

\(A=\left|-1\right|=1\)

Dấu "=" xảy ra \(\left(1-3x\right)\left(3x-2\right)\ge0\)

\(\Rightarrow\dfrac{1}{3}\le x\le\dfrac{2}{3}\)

Vậy: \(A_{min}=1\) khi \(\dfrac{1}{3}\le x\le\dfrac{2}{3}\)

21 tháng 7 2023

3: Ta có: \(\sqrt{4x+1}=x+1\)

\(\Leftrightarrow x^2+2x+1=4x+1\)

\(\Leftrightarrow x\left(x-2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\left(nhận\right)\\x=2\left(nhận\right)\end{matrix}\right.\)

4: Ta có: \(2\sqrt{x-1}+\dfrac{1}{3}\sqrt{9x-9}=15\)

\(\Leftrightarrow3\sqrt{x-1}=15\)

\(\Leftrightarrow x-1=25\)

hay x=26

5: Ta có: \(\sqrt{4x^2-12x+9}=7\)

\(\Leftrightarrow\left|2x-3\right|=7\)

\(\Leftrightarrow\left[{}\begin{matrix}2x-3=7\\2x-3=-7\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2x=10\\2x=-4\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=5\\x=-2\end{matrix}\right.\)

13 tháng 12 2019

\(\sqrt{\left(3x^2\right)}+12x+4=4\)

\(3x+12x+4=4\)

⇔ 15x + 4 = 4

⇔ 15x = 0

⇔ x = 0