Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(B=\dfrac{\sqrt{6+2\left(\sqrt{6}+\sqrt{3}+\sqrt{2}\right)}-\sqrt{6-2\left(\sqrt{6}-\sqrt{3}+\sqrt{2}\right)}}{\sqrt{2}}\)
\(=\dfrac{\sqrt{6+2\sqrt{6}+2\sqrt{3}+2\sqrt{2}}-\sqrt{6-2\sqrt{6}+2\sqrt{3}-2\sqrt{2}}}{\sqrt{2}}\)
\(=\dfrac{\left(\sqrt{6+2\sqrt{6}+2\sqrt{3}+2\sqrt{2}}-\sqrt{6-2\sqrt{6}+2\sqrt{3}-2\sqrt{2}}\right)\sqrt{2}}{\sqrt{2}}\)
\(=\dfrac{\sqrt{\left(6+2\sqrt{6}+2\sqrt{3}+2\sqrt{2}\right)\cdot2}-\sqrt{\left(6-2\sqrt{6}+2\sqrt{3}-2\sqrt{2}\right)\cdot2}}{2}\)
\(=\dfrac{\sqrt{12+4\sqrt{6}+4\sqrt{3}+4\sqrt{2}}-\sqrt{12-4\sqrt{6}+4\sqrt{3}-4\sqrt{2}}}{2}\)
\(=\dfrac{4}{2}\)
\(=2\)
\(C=\dfrac{\sqrt{9-6\sqrt{2}}-\sqrt{6}}{\sqrt{3}}\)
\(=\dfrac{\left(\sqrt{9-6\sqrt{2}}-\sqrt{6}\right)\sqrt{3}}{3}\)
\(=\dfrac{\sqrt{\left(9-6\sqrt{2}\right)\cdot3}-3\sqrt{2}}{3}\)
\(=\dfrac{\sqrt{27-18\sqrt{2}}-3\sqrt{2}}{3}\)
\(=\dfrac{\sqrt{\left(3-3\sqrt{2}\right)^2}-3\sqrt{2}}{3}\)
\(=\dfrac{3\sqrt{2}-3-3\sqrt{2}}{3}\)
\(=\dfrac{-3}{3}\)
\(=-1\)
\(\begin{array}{l}a)2.\sqrt 6 .( - \sqrt 6 )\\ = - 2.\sqrt 6 .\sqrt 6 \\ = - 2.{(\sqrt 6 )^2}\\ = - 2.6\\ = - 12\\b)\sqrt {1,44} - 2.{(\sqrt {0,6} )^2}\\ = 1,2 - 2.0,6\\ = 1,2 - 1,2\\ = 0\\c)0,1.{(\sqrt 7 )^2} + \sqrt {1,69} \\ = 0,1.7 + 1,3 \\= 0,7 + 1,3 \\= 2\\d)( - 0,1).{(\sqrt {120} )^2} - \frac{1}{4}.{(\sqrt {20} )^2} \\= ( - 0,1).120 - \frac{1}{4}.20\\ = - 12 - 5\\ = - (12 + 5)\\ = - 17\end{array}\)
a: \(=-2\sqrt{6}\cdot\sqrt{6}=-2\cdot\sqrt{6\cdot6}=-2\cdot6=-12\)
b: \(=1.2-2\cdot0.6=1.2-1.2=0\)
c: \(=0.1\cdot7+1.3=0.7+1.3=2\)
d: \(=-0.1\cdot120-\dfrac{1}{4}\cdot20=-12-5=-17\)
\(\sqrt[]{2^2+\sqrt[]{4^2}+\sqrt[]{\left(-6\right)^2}+\sqrt[]{\left(-8\right)^2}}\)
\(=\sqrt[]{4+4+6+8}=\sqrt[]{22}\)
Ta thấy \(4+2\sqrt{3}=3+2\sqrt{3}+1=\left(\sqrt{3}+1\right)^2\)
\(\Rightarrow\sqrt{4+2\sqrt{3}}=\sqrt{\left(\sqrt{3}+1\right)^2}=\sqrt{3}+1\)
\(\Rightarrow2\sqrt{2}\sqrt{3-\sqrt{4+2\sqrt{3}}}=2\sqrt{6-2\left(\sqrt{3}+1\right)}\)\(=2\sqrt{6-2\sqrt{3}-2}=2\sqrt{4-2\sqrt{3}}\)
\(=2\sqrt{\left(\sqrt{3}-1\right)^2}=2\left(\sqrt{3}-1\right)=2\sqrt{3}-2\)
\(\Rightarrow\sqrt{6+2\sqrt{2}\sqrt{3-\sqrt{4+2\sqrt{3}}}}=\sqrt{6+2\sqrt{3}-2}\)\(=\sqrt{\left(\sqrt{3}+1\right)^2}=\sqrt{3}+1\)
Bài1:
Ta có:
a)\(\sqrt{\dfrac{3^2}{5^2}}=\sqrt{\dfrac{9}{25}}=\dfrac{3}{5}\)
b)\(\dfrac{\sqrt{3^2}+\sqrt{42^2}}{\sqrt{5^2}+\sqrt{70^2}}=\dfrac{\sqrt{9}+\sqrt{1764}}{\sqrt{25}+\sqrt{4900}}=\dfrac{3+42}{5+70}=\dfrac{45}{75}=\dfrac{3}{5}\)
c)\(\dfrac{\sqrt{3^2}-\sqrt{8^2}}{\sqrt{5^2}-\sqrt{8^2}}=\dfrac{\sqrt{9}-\sqrt{64}}{\sqrt{25}-\sqrt{64}}=\dfrac{3-8}{5-8}=\dfrac{-5}{-3}=\dfrac{5}{3}\)
Từ đó, suy ra: \(\dfrac{3}{5}=\sqrt{\dfrac{3^2}{5^2}}=\dfrac{\sqrt{3^2}+\sqrt{42^2}}{\sqrt{5^2}+\sqrt{70^2}}\)
Bài 2:
Không có đề bài à bạn?
Bài 3:
a)\(\sqrt{x}-1=4\)
\(\Rightarrow\sqrt{x}=5\)
\(\Rightarrow x=\sqrt{25}\)
\(\Rightarrow x=5\)
b)Vd:\(\sqrt{x^4}=\sqrt{x.x.x.x}=x^2\Rightarrow\sqrt{x^4}=x^2\)
Từ Vd suy ra:\(\sqrt{\left(x-1\right)^4}=16\)
\(\Rightarrow\left(x-1\right)^2=16\)
\(\Rightarrow\left(x-1\right)^2=4^2\)
\(\Rightarrow x-1=4\)
\(\Rightarrow x=5\)
ói bấm máy kêu chó ****