Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Mình nghĩ là làm như này nè:
Dễ cm:
+: \(\left(a+b\right)^2\le\)\(2\left(a^2+b^2\right)\)(với mọi a, b) ... Áp dụng => \(\left(x+y\right)^2\le\)\(2\)<=> \(-\sqrt{2}\le x+y\)\(\le\sqrt{2}\)
+: \(\sqrt{a+b}\le\)\(\sqrt{a}+\sqrt{b}\)\(\le\sqrt{2\left(a+b\right)}\)(Cái đầu dùng tương đương còn cái hai dùng bđt BCS)
ÁP dụng =>\(\sqrt{8-5\sqrt{2}}\le\) \(\sqrt{8+5\left(x+y\right)}\le\)\(T\)\(\le\sqrt{16+10\left(x+y\right)}\)\(\le\sqrt{16+10\sqrt{2}}\)
Dấu "=" <=> ...
Bạn @Đậu Đậu gì đó ơi, Bạn giải tới đó thì max=\(16+10\sqrt{2}\)thì mình hiểu rồi , còn min =??? ghi rõ hộ mình nhé
Đặt \(t=\sqrt{x},t\ge0\)
- \(B=\frac{3t^2+t+10}{t+1}=\frac{3\left(t^2-2t+1\right)+7\left(t+1\right)}{t+1}=\frac{3\left(t-1\right)^2}{t+1}+7\ge7\)
Dấu "=" xảy ra khi t = 1 <=> x = 1
B đạt giá trị nhỏ nhất bằng 7 tại x = 1
- Không tồn tại giá trị lớn nhất.
để biểu thức C xác định thì xảy ra đồng thời
- x-2>=0
- 5-x>=0
=>2=<x=<5
thay x=2;3;4;5
tim ra gia tri nho nhat va lon nhat
\(Q\le\sqrt{2\left(x-2+4-x\right)}=2\)
Bên cạnh đó \(2\le x\le4\)
=> \(Q\ge\sqrt{2}\)
Vậy GTLN là 2 đạt được khi x = 3
GTNN là \(\sqrt{2}\)đạt được khi x = 2 hoặc 4