K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 11 2021
Đứa nào là em
20 tháng 11 2021

đặt \(y=\sqrt{5x-1}\) , \(z=\sqrt{5x-4}\), ta có

\(\hept{\begin{cases}y-z=-1\\y^2-z^2=5\end{cases}}\)<=>\(\hept{\begin{cases}z=y-1\\y^2-\left(y-1\right)^2=5\end{cases}}\)<=>\(\hept{\begin{cases}z=y-1\\2y-1=5\end{cases}}\)<=>\(\hept{\begin{cases}z=2\\y=3\end{cases}}\)

với \(z=2\), ta có \(\sqrt{5x+4}=2\)<=>\(5x+4=4\)<=>\(x=0\)

với \(y=3\)<=>\(\sqrt{5x-1}=3\)<=>\(5x-1=9\)<=>\(x=2\)

vậy có 2 nghiệm thỏa mãn là\(x=0\)và \(x=2\)

AH
Akai Haruma
Giáo viên
19 tháng 12 2021

Bạn tham khảo lời giải tại đây:

https://hoc24.vn/cau-hoi/giai-pt-sqrtx-2sqrt4-x2x2-5x-1.219493072549

18 tháng 6 2016

cái j zị

18 tháng 6 2016

đề bị sao r đó

NV
15 tháng 7 2020

e/

ĐKXĐ: \(x\ge2\)

\(\Leftrightarrow x^2+8x-2+6\sqrt{x\left(x+1\right)\left(x-2\right)}\le5x^2-4x-6\)

\(\Leftrightarrow3\sqrt{x\left(x+1\right)\left(x-2\right)}\le2x^2-6x-2\)

\(\Leftrightarrow3\sqrt{\left(x^2-2x\right)\left(x+1\right)}\le2x^2-6x-2\)

Đặt \(\left\{{}\begin{matrix}\sqrt{x^2-2x}=a\ge0\\\sqrt{x+1}=b>0\end{matrix}\right.\)

\(\Rightarrow2a^2-2b^2=2x^2-6x-2\)

BPT trở thành:

\(3ab\le2a^2-2b^2\Leftrightarrow2a^2-3ab-2b^2\ge0\)

\(\Leftrightarrow\left(2a+b\right)\left(a-2b\right)\ge0\)

\(\Leftrightarrow a\ge2b\Rightarrow\sqrt{x^2-2x}\ge2\sqrt{x+1}\)

\(\Leftrightarrow x^2-2x\ge4x+4\)

\(\Leftrightarrow x^2-6x-4\ge0\)

\(\Rightarrow x\ge3+\sqrt{13}\)

NV
15 tháng 7 2020

d/

ĐKXĐ: \(x\ge-1\)

\(3\sqrt{\left(x+1\right)\left(x^2-x+1\right)}+4x^2-5x+3\ge0\)

Đặt \(\left\{{}\begin{matrix}\sqrt{x^2-x+1}=a>0\\\sqrt{x+1}=b\ge0\end{matrix}\right.\)

\(\Rightarrow4a^2-b^2=4x^2-5x+3\)

BPT trở thành:

\(4a^2+3ab-b^2\ge0\)

\(\Leftrightarrow\left(a+b\right)\left(4a-b\right)\ge0\)

\(\Leftrightarrow4a-b\ge0\Rightarrow4a\ge b\)

\(\Rightarrow4\sqrt{x^2+x+1}\ge\sqrt{x+1}\)

\(\Leftrightarrow16x^2+16x+4\ge x+1\)

\(\Leftrightarrow16x^2+15x+3\ge0\)

\(\Rightarrow\left[{}\begin{matrix}-1\le x\le\frac{-15-\sqrt{33}}{32}\\x\ge\frac{-15+\sqrt{33}}{32}\end{matrix}\right.\)

AH
Akai Haruma
Giáo viên
28 tháng 11 2021

Lời giải:

1. ĐKXĐ: $x\geq \frac{-5+\sqrt{21}}{2}$

PT $\Leftrightarrow x^2+5x+1=x+1$

$\Leftrightarrow x^2+4x=0$

$\Leftrightarrow x(x+4)=0$

$\Rightarrow x=0$ hoặc $x=-4$

Kết hợp đkxđ suy ra $x=0$

2. ĐKXĐ: $x\leq 2$

PT $\Leftrightarrow x^2+2x+4=2-x$

$\Leftrightarrow x^2+3x+2=0$

$\Leftrightarrow (x+1)(x+2)=0$

$\Leftrightarrow x+1=0$ hoặc $x+2=0$

$\Leftrightarrow x=-1$ hoặc $x=-2$
3.

ĐKXĐ: $-2\leq x\leq 2$

PT $\Leftrightarrow \sqrt{2x+4}=\sqrt{2-x}$

$\Leftrightarrow 2x+4=2-x$

$\Leftrightarrow 3x=-2$

$\Leftrightarrow x=\frac{-2}{3}$ (tm)

 

AH
Akai Haruma
Giáo viên
30 tháng 11 2021

Lời giải:
ĐKXĐ:.........

PT \(\Leftrightarrow 3(x^2-x)+[(x+1)-\sqrt{3x+1}]+[(x+2)-\sqrt{5x+4}]=0\)

\(\Leftrightarrow 3(x^2-x)+\frac{x^2-x}{x+1+\sqrt{3x+1}}+\frac{x^2-x}{x+2+\sqrt{5x+4}}=0\)

\(\Leftrightarrow (x^2-x)\left[3+\frac{1}{x+1+\sqrt{3x+1}}+\frac{1}{x+2+\sqrt{5x+4}}\right]=0\)

Dễ thấy với $x\geq \frac{-1}{3}$ thì biểu thức trong ngoặc vuông luôn dương 

$\Rightarrow x^2-x=0$

$\Leftrightarrow x(x-1)=0$

$\Rightarrow x=0$ hoặc $x=1$ (đều tm)

22 tháng 12 2020

Tham khảo:

Giải pt: \(\sqrt{x-2} \sqrt{4-x}=2x^2-5x-1\) - Hoc24

29 tháng 11 2017

a) Đặt \(a=\sqrt[3]{1+\sqrt{x}};b=\sqrt[3]{1-\sqrt{x}}\)

\(\Rightarrow a^3+b^3=2\) kết hợp với đề bài

\(\Rightarrow\left\{{}\begin{matrix}a^3+b^3=2\\a+b=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\left(a+b\right)\left(a^2-ab+b^2\right)=2\\a+b=2\end{matrix}\right.\)

................

29 tháng 11 2017

b và c tương tự

NV
21 tháng 7 2021

ĐKXĐ: \(x>\dfrac{1}{5}\)

\(1-3x^2< \left(x+2\right)\sqrt[]{5x-1}+5x-1\)

\(\Leftrightarrow3x^2+5x-2+\left(x+2\right)\sqrt{5x-1}\ge0\)

\(\Leftrightarrow\left(x+2\right)\left(3x-1\right)+\left(x+2\right)\sqrt{5x-1}>0\)

\(\Leftrightarrow\left(x+2\right)\left(3x-1+\sqrt{5x-1}\right)>0\)

\(\Leftrightarrow3x-1+\sqrt{5x-1}>0\)

\(\Leftrightarrow\sqrt{5x-1}>1-3x\)

TH1: \(\left\{{}\begin{matrix}x\ge\dfrac{1}{5}\\1-3x< 0\end{matrix}\right.\) \(\Leftrightarrow x>\dfrac{1}{3}\)

TH2: \(\left\{{}\begin{matrix}x\le\dfrac{1}{3}\\5x-1>9x^2-6x+1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\le\dfrac{1}{3}\\9x^2-11x+2< 0\end{matrix}\right.\) \(\Rightarrow\dfrac{2}{9}< x\le\dfrac{1}{3}\)

Kết luận: \(x>\dfrac{2}{9}\)

6 tháng 1 2021

ĐK: \(x\ge1\)

Đặt \(\sqrt{3x-2}+2\sqrt{x-1}=t\left(t\ge1\right)\)

\(pt\Leftrightarrow3t=t^2-4\)

\(\Leftrightarrow t^2-3t-4=0\)

\(\Leftrightarrow\left[{}\begin{matrix}t=4\\t=-1\left(l\right)\end{matrix}\right.\)

\(t=4\Leftrightarrow\sqrt{3x-2}+2\sqrt{x-1}=4\)

\(\Leftrightarrow7x-6+4\sqrt{\left(3x-2\right)\left(x-1\right)}=16\)

\(\Leftrightarrow4\sqrt{3x^2-5x+2}=22-7x\)

\(\Leftrightarrow\left\{{}\begin{matrix}48x^2-80x+32=484+49x^2-308x\\22-7x\ge0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}452+x^2-228x=0\\x\le\dfrac{22}{7}\end{matrix}\right.\)

\(\Leftrightarrow x=2\left(tm\right)\)