K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

DD
6 tháng 10 2021

\(\sqrt{5+\sqrt{7x}}=2+\sqrt{7}\)

\(\Leftrightarrow5+\sqrt{7x}=\left(2+\sqrt{7}\right)^2=4+7+2.2.\sqrt{7}=11+4\sqrt{7}\)

\(\Leftrightarrow\sqrt{7x}=6+4\sqrt{7}\)

\(\Leftrightarrow7x=\left(6+4\sqrt{7}\right)^2\)

\(\Leftrightarrow7x=148+48\sqrt{7}\)

\(\Leftrightarrow x=\frac{148}{7}+\frac{48}{7}\sqrt{7}\)

5 tháng 8 2021

22,

1, Đặt √(3-√5) = A

=> √2A=√(6-2√5)

=> √2A=√(5-2√5+1)

=> √2A=|√5 -1|

=> A=\(\dfrac{\sqrt{5}-1}{\text{√2}}\)

=> A= \(\dfrac{\sqrt{10}-\sqrt{2}}{2}\)

2, Đặt √(7+3√5) = B

=> √2B=√(14+6√5)

 => √2B=√(9+2√45+5)

=> √2B=|3+√5|

=> B= \(\dfrac{3+\sqrt{5}}{\sqrt{2}}\)

=> B= \(\dfrac{3\sqrt{2}+\sqrt{10}}{2}\)

3, 

Đặt √(9+√17) - √(9-√17) -\(\sqrt{2}\)=C

=> √2C=√(18+2√17) - √(18-2√17) -\(2\)

=> √2C=√(17+2√17+1) - √(17-2√17+1) -\(2\)

=> √2C=√17+1- √17+1 -\(2\)

=> √2C=0

=> C=0

26,

|3-2x|=2\(\sqrt{5}\)

TH1: 3-2x ≥ 0 ⇔ x≤\(\dfrac{-3}{2}\)

3-2x=2\(\sqrt{5}\)

-2x=2\(\sqrt{5}\) -3

x=\(\dfrac{3-2\sqrt{5}}{2}\) (KTMĐK)

TH2: 3-2x < 0 ⇔ x>\(\dfrac{-3}{2}\)

3-2x=-2\(\sqrt{5}\)

-2x=-2√5 -3

x=\(\dfrac{3+2\sqrt{5}}{2}\) (TMĐK)

Vậy x=\(\dfrac{3+2\sqrt{5}}{2}\)

 

 

 

 

 

 

6 tháng 8 2021

2, \(\sqrt{x^2}\)=12 ⇔ |x|=12 ⇔ x=12, -12

3, \(\sqrt{x^2-2x+1}\)=7

⇔ |x-1|=7 

TH1: x-1≥0 ⇔ x≥1

x-1=7 ⇔ x=8 (TMĐK)

TH2: x-1<0 ⇔ x<1

x-1=-7 ⇔ x=-6 (TMĐK)

Vậy x=8, -6

4, \(\sqrt{\left(x-1\right)^2}\)=x+3

⇔ |x-1|=x+3

TH1: x-1≥0 ⇔ x≥1

x-1=x+3 ⇔ 0x=4 (KTM)

TH2: x-1<0 ⇔ x<1

x-1=-x-3 ⇔ 2x=-2 ⇔x=-1 (TMĐK)

Vậy x=-1

 

12 tháng 7 2020

Trả lời:

\(\frac{2\sqrt{5}-5\sqrt{2}}{\sqrt{2}-\sqrt{5}}+\frac{6}{2-\sqrt{10}}+\sqrt{67+12\sqrt{7}}\)

\(=\frac{\sqrt{2}.\sqrt{5}.\left(\sqrt{2}-\sqrt{5}\right)}{\sqrt{2}-\sqrt{5}}-\frac{6}{\sqrt{10}-2}+\sqrt{63+12\sqrt{7}+4}\)

\(=\sqrt{2}.\sqrt{5}-\frac{6.\left(\sqrt{10}+2\right)}{10-4}+\sqrt{\left(3\sqrt{7}+2\right)^2}\)

\(=\sqrt{10}-\sqrt{10}-2+3\sqrt{7}+2\)

\(=3\sqrt{7}\)

27 tháng 5 2021

1,\(K=\sqrt{3-\sqrt{5}}+\sqrt{3+\sqrt{x}}\)

\(=\dfrac{1}{\sqrt{2}}\left(\sqrt{6-2\sqrt{5}}+\sqrt{6+2\sqrt{5}}\right)\)\(=\dfrac{1}{\sqrt{2}}\left(\sqrt{\left(\sqrt{5}-1\right)^2}+\sqrt{\left(\sqrt{5}+1\right)^2}\right)\)

\(=\dfrac{1}{\sqrt{2}}\left(\left|\sqrt{5}-1\right|+\sqrt{5}+1\right)\)\(=\dfrac{1}{\sqrt{2}}\left|\sqrt{5}-1+\sqrt{5}+1\right|=\dfrac{1}{\sqrt{2}}.2\sqrt{5}\)\(=\sqrt{10}\)

2, \(\sqrt{x-3}-2\sqrt{x^2-3x}=0\left(đk:x\ge3\right)\)

\(\Leftrightarrow\sqrt{x-3}\left(1-2\sqrt{x}\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x-3}=0\\1-2\sqrt{x}=0\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=3\left(tm\right)\\x=\left(\dfrac{1}{2}\right)^2=\dfrac{1}{4}\left(ktm\right)\end{matrix}\right.\)

Vậy pt có nghiệm x=3

3, \(\dfrac{9x-7}{\sqrt{7x+5}}=\sqrt{7x+5}\left(đk:x>-\dfrac{5}{7}\right)\)

\(\Leftrightarrow9x-7=7x+5\)

\(\Leftrightarrow x=6\left(tm\right)\)

4, \(x-5\sqrt{x}+4=0\)(đk: \(x\ge0\))

\(\Leftrightarrow\left(\sqrt{x}-1\right)\left(\sqrt{x}-4\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x}=1\\\sqrt{x}=4\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=16\end{matrix}\right.\) (tm)

Vậy...

1) Bạn tự làm

2) ĐK: \(x\ge3\)

PT \(\Leftrightarrow\sqrt{x-3}\left(1-2\sqrt{x}\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x-3}=0\\2\sqrt{x}=1\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=3\\x=\dfrac{1}{4}\left(loại\right)\end{matrix}\right.\)

  Vậy ...

3) ĐK: \(x>-\dfrac{5}{7}\)

PT \(\Rightarrow9x-7=7x+5\) \(\Leftrightarrow x=6\)

  Vậy ...

4) ĐK: \(x\ge0\)

PT \(\Leftrightarrow x-4\sqrt{x}-\sqrt{x}+4=0\)

      \(\Leftrightarrow\left(\sqrt{x}-4\right)\left(\sqrt{x}-1\right)=0\)

      \(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x}=4\\\sqrt{x}=1\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=16\\x=1\end{matrix}\right.\)

  Vậy ...

 

5 tháng 9 2015

Đặt y= \(\sqrt{7+\sqrt{5}}+\sqrt{7-\sqrt{5}}\)

=> y\(\left(\sqrt{7+\sqrt{5}}+\sqrt{7-\sqrt{5}}\right)^2\)\(\left(\sqrt{7+\sqrt{5}}\right)^2+2\sqrt{\left(7+\sqrt{5}\right)\left(7-\sqrt{5}\right)}+\left(\sqrt{7-\sqrt{5}}\right)^2\)

=\(7+\sqrt{5}+2\sqrt{7^2-\left(\sqrt{5}\right)^2}+7-\sqrt{5}\)\(14+2\sqrt{44}\)\(14+4\sqrt{11}\)\(2\left(7+2\sqrt{11}\right)\)

=> y= \(\sqrt{2\left(7+2\sqrt{11}\right)}\)

=> A = \(\frac{\sqrt{2\left(7+2\sqrt{11}\right)}}{\sqrt{7+2\sqrt{11}}}-\sqrt{\left(\sqrt{2}-1\right)^2}=\sqrt{2}-\left|\sqrt{2}-1\right|=\sqrt{2}-\left(\sqrt{2}-1\right)\left(do\sqrt{2}>1\right)=\sqrt{2}-\sqrt{2}+1=0+1=1\)

6 tháng 12 2021

\(\dfrac{2\sqrt{7}-2\sqrt{3}}{\sqrt{7}-\sqrt{3}}=2\)

10 tháng 9 2020

\(1,\sqrt{\left(2+\sqrt{7}\right)^2-\sqrt{\left(2-\sqrt{7}\right)^2}}\)    ( áp dụng hđt thứ 3 \(a^2-b^2=\left(a-b\right)\left(a+b\right)\))

\(=\sqrt{\left(2+\sqrt{7}+2-\sqrt{7}\right)\left(2+\sqrt{7}-2+\sqrt{7}\right)}\)

\(=\sqrt{4\cdot\sqrt{7}}\)

\(2,\sqrt{\left(3\sqrt{5}-5\sqrt{2}\right)^2}-\sqrt{\left(5\sqrt{2}+3\sqrt{5}\right)^2}\)

\(\Leftrightarrow\sqrt{\left(3\sqrt{5}-5\sqrt{2}\right)^2}=\sqrt{\left(5\sqrt{2}+3\sqrt{5}\right)^2}\)

\(\Leftrightarrow\left(3\sqrt{5}-5\sqrt{2}\right)^2=\left(5\sqrt{2}+3\sqrt{5}\right)^2\)

\(\Leftrightarrow\left(3\sqrt{5}-5\sqrt{2}\right)^2-\left(5\sqrt{2}+3\sqrt{5}\right)^2\)

\(=\left(3\sqrt{5}-5\sqrt{2}+5\sqrt{2}+3\sqrt{5}\right)\left(3\sqrt{5}-5\sqrt{2}-5\sqrt{2}-3\sqrt{5}\right)\)

\(=6\sqrt{5}\cdot\left(-10\sqrt{2}\right)\)

\(3,\sqrt{10+2\sqrt{21}}-\sqrt{10-2\sqrt{21}}\)

\(\Leftrightarrow\sqrt{10+2\sqrt{21}}=\sqrt{10-2\sqrt{21}}\)

\(\Leftrightarrow10+2\sqrt{21}=10-2\sqrt{21}\)

\(\Leftrightarrow4\sqrt{21}\)

cuối lười tính nên thôi nhá :>

11 tháng 9 2020

tks :>

15 tháng 10 2021
2 tháng 12 2021

\(ĐK:x>-\dfrac{5}{7}\\ PT\Leftrightarrow7x+5=9x-7\Leftrightarrow x=6\left(tm\right)\)

8 tháng 7 2017

\(A=\sqrt{3+\sqrt{5}}+\sqrt{7-3\sqrt{5}}-\sqrt{2}\)

\(=\sqrt{\frac{6+2\sqrt{5}}{2}}+\sqrt{\frac{14-6\sqrt{5}}{2}}-\sqrt{2}\)

\(=\sqrt{\frac{\left(\sqrt{5}+1\right)^2}{2}}+\sqrt{\frac{\left(3-\sqrt{5}\right)^2}{2}}-\sqrt{2}\)

\(=\frac{\sqrt{5}+1}{\sqrt{2}}+\frac{3-\sqrt{5}}{\sqrt{2}}-\sqrt{2}\)

\(=2\sqrt{2}-\sqrt{2}\)