K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
22 tháng 4 2021

Đặt \(\sqrt{2x^2+3x+2}=t>0\)

\(\Rightarrow4x^2+6x+21=2t^2+17\)

Phương trình trở thành:

\(t+\sqrt{2t^2+17}=11\Leftrightarrow\sqrt{2t^2+17}=11-t\)

\(\Leftrightarrow\left\{{}\begin{matrix}11-t\ge0\\2t^2+17=\left(11-t\right)^2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}t\le11\\t^2+22t-104=0\end{matrix}\right.\)

\(\Rightarrow t=4\Leftrightarrow2x^2+3x+2=16\)

\(\Leftrightarrow2x^2+3x-14=0\)

\(\Leftrightarrow...\)