Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left\{{}\begin{matrix}a=\dfrac{35}{49}=\dfrac{5}{7}\\b=\sqrt{\dfrac{5^2}{7^2}}=\dfrac{5}{7}\\c=\dfrac{\sqrt{5^2}+\sqrt{35^2}}{\sqrt{7^2}+\sqrt{49^2}}=\dfrac{5+35}{7+49}=\dfrac{5}{7}\\d=\dfrac{\sqrt{5^2}-\sqrt{35^2}}{\sqrt{7^2}-\sqrt{49^2}}=\dfrac{5-35}{7-49}=\dfrac{5}{7}\end{matrix}\right.\)
\(\Rightarrow a=b=c=d=\dfrac{5}{7}\)
\(a=\dfrac{35}{49};b=\dfrac{5}{7}\\ c,=\dfrac{5+35}{7+49}=\dfrac{12}{14}=\dfrac{6}{7}\\ d,=\dfrac{5-35}{7-49}\)
Áp dụng t/c dtsbn:
\(\dfrac{5}{7}=\dfrac{35}{49}=\dfrac{5+35}{7+49}=\dfrac{5-35}{7-49}\) hay \(a=b=c=d\)
\(B=\dfrac{\sqrt{6+2\left(\sqrt{6}+\sqrt{3}+\sqrt{2}\right)}-\sqrt{6-2\left(\sqrt{6}-\sqrt{3}+\sqrt{2}\right)}}{\sqrt{2}}\)
\(=\dfrac{\sqrt{6+2\sqrt{6}+2\sqrt{3}+2\sqrt{2}}-\sqrt{6-2\sqrt{6}+2\sqrt{3}-2\sqrt{2}}}{\sqrt{2}}\)
\(=\dfrac{\left(\sqrt{6+2\sqrt{6}+2\sqrt{3}+2\sqrt{2}}-\sqrt{6-2\sqrt{6}+2\sqrt{3}-2\sqrt{2}}\right)\sqrt{2}}{\sqrt{2}}\)
\(=\dfrac{\sqrt{\left(6+2\sqrt{6}+2\sqrt{3}+2\sqrt{2}\right)\cdot2}-\sqrt{\left(6-2\sqrt{6}+2\sqrt{3}-2\sqrt{2}\right)\cdot2}}{2}\)
\(=\dfrac{\sqrt{12+4\sqrt{6}+4\sqrt{3}+4\sqrt{2}}-\sqrt{12-4\sqrt{6}+4\sqrt{3}-4\sqrt{2}}}{2}\)
\(=\dfrac{4}{2}\)
\(=2\)
\(C=\dfrac{\sqrt{9-6\sqrt{2}}-\sqrt{6}}{\sqrt{3}}\)
\(=\dfrac{\left(\sqrt{9-6\sqrt{2}}-\sqrt{6}\right)\sqrt{3}}{3}\)
\(=\dfrac{\sqrt{\left(9-6\sqrt{2}\right)\cdot3}-3\sqrt{2}}{3}\)
\(=\dfrac{\sqrt{27-18\sqrt{2}}-3\sqrt{2}}{3}\)
\(=\dfrac{\sqrt{\left(3-3\sqrt{2}\right)^2}-3\sqrt{2}}{3}\)
\(=\dfrac{3\sqrt{2}-3-3\sqrt{2}}{3}\)
\(=\dfrac{-3}{3}\)
\(=-1\)
b) Ta có: \(\frac{\sqrt{5^2}+\sqrt{35^2}}{\sqrt{7^2}+\sqrt{49^2}}=\frac{5+35}{7+49}=\frac{40}{56}=\frac{5}{7}\) (1)
Lại có: \(\frac{\sqrt{5^2}-\sqrt{35^2}}{\sqrt{7^2}-\sqrt{49^2}}=\frac{5-35}{7-49}=\frac{-30}{-42}=\frac{5}{7}\) (2)
Từ biểu thức (1) và biểu thức (2)
=> \(\frac{\sqrt{5^2}+\sqrt{35^2}}{\sqrt{7^2}+\sqrt{49^2}}=\frac{\sqrt{5^2}-\sqrt{35^2}}{\sqrt{7^2}-\sqrt{49^2}}\)
\(\begin{array}{l}a)2.\sqrt 6 .( - \sqrt 6 )\\ = - 2.\sqrt 6 .\sqrt 6 \\ = - 2.{(\sqrt 6 )^2}\\ = - 2.6\\ = - 12\\b)\sqrt {1,44} - 2.{(\sqrt {0,6} )^2}\\ = 1,2 - 2.0,6\\ = 1,2 - 1,2\\ = 0\\c)0,1.{(\sqrt 7 )^2} + \sqrt {1,69} \\ = 0,1.7 + 1,3 \\= 0,7 + 1,3 \\= 2\\d)( - 0,1).{(\sqrt {120} )^2} - \frac{1}{4}.{(\sqrt {20} )^2} \\= ( - 0,1).120 - \frac{1}{4}.20\\ = - 12 - 5\\ = - (12 + 5)\\ = - 17\end{array}\)
a: \(=-2\sqrt{6}\cdot\sqrt{6}=-2\cdot\sqrt{6\cdot6}=-2\cdot6=-12\)
b: \(=1.2-2\cdot0.6=1.2-1.2=0\)
c: \(=0.1\cdot7+1.3=0.7+1.3=2\)
d: \(=-0.1\cdot120-\dfrac{1}{4}\cdot20=-12-5=-17\)
#Giải:
a)\(\sqrt{27}\)+\(\sqrt{75}\)-\(\sqrt{\dfrac{1}{3}}\)=8\(\sqrt{3}\)-\(\sqrt{\dfrac{1}{3}}\)=\(\dfrac{23\sqrt{3}}{3}\).
b)\(\sqrt{4+2\sqrt{3}}\)-\(\sqrt{4-2\sqrt{3}}\)=2.
c)\(\dfrac{3}{\sqrt{7}+\sqrt{2}}\)+\(\dfrac{2}{3+\sqrt{7}}\)+\(\dfrac{2-\sqrt{2}}{\sqrt{2}-1}\)=1,093+\(\dfrac{2-\sqrt{2}}{\sqrt{2}-1}\)=2,507.
a) = \(3\sqrt{3}+5\sqrt{3}-\dfrac{1}{\sqrt{3}}\)
= \(3\sqrt{3}+5\sqrt{3}-\dfrac{3}{\sqrt{3}}\)
= \(\dfrac{23\sqrt{3}}{3}\)
b) = \(\sqrt{\left(1+\sqrt{3}\right)^2}-\sqrt{\left(1-\sqrt{3}\right)^2}\)
= \(1+\sqrt{3}-\left(\sqrt{3}-1\right)\)
= \(1+\sqrt{3}-\sqrt{3}+1\)
= 2
c) = \(\dfrac{3\left(\sqrt{7}-\sqrt{2}\right)}{5}+\dfrac{2\left(3-\sqrt{7}\right)}{2}+\left(2-\sqrt{2}\right)\left(\sqrt{2}+1\right)\)
= \(3\sqrt{7}-3\sqrt{2}+3-\sqrt{7}+2\sqrt{2}+2-2-\sqrt{2}\)
= \(\dfrac{3\sqrt{7}-3\sqrt{2}}{5}+3-\sqrt{7}+\sqrt{2}\)
= \(\dfrac{3\sqrt{7}-3\sqrt{2}-5\sqrt{7}+5\sqrt{2}}{5}+3\)
= \(\dfrac{-2\sqrt{7}+2\sqrt{2}}{5}+3\)
\(\approx2,5\)
a)\(\sqrt{\dfrac{3^2}{7^2}}=\sqrt{\dfrac{9}{49}}=\sqrt{\dfrac{3}{7}}\)
b)\(\dfrac{\sqrt{3^2}+\sqrt{39^2}}{\sqrt{7^2}+\sqrt{91^2}}=\dfrac{\sqrt{9}+\sqrt{1521}}{\sqrt{49}+\sqrt{8281}}=\dfrac{3+39}{7+91}=\dfrac{42}{98}\)
c)Tương tự câu b, ta đc:
\(\dfrac{\sqrt{3^2}-\sqrt{39^2}}{\sqrt{7^2}-\sqrt{91^2}}=\dfrac{3-39}{7-91}=\dfrac{-36}{86}=\dfrac{3}{7}\)
d)Tương tự câu a, ta đc:
\(\dfrac{\sqrt{39^2}}{\sqrt{91^2}}=\dfrac{39}{91}\)
Chúc Bạn Học Tốt!!!
a) \(\sqrt{\dfrac{3^2}{7^2}}=\sqrt{\left(\dfrac{3}{7}\right)^2}=\left|\dfrac{3}{7}\right|=\dfrac{3}{7}\)
b) \(\dfrac{\sqrt{3}^2+\sqrt{39}^2}{\sqrt{7}^2+\sqrt{91}^2}=\dfrac{\left|3\right|+\left|39\right|}{\left|7\right|+\left|91\right|}=\dfrac{3+39}{7+91}=\dfrac{42}{98}=\dfrac{3}{7}\)
c) \(\dfrac{\sqrt{3}^2-\sqrt{39}^2}{\sqrt{7}^2-\sqrt{91}^2}=\dfrac{\left|3\right|- \left|39\right|}{\left|7\right|-\left|91\right|}=\dfrac{3-39}{7-91}=\dfrac{-36}{-84}=\dfrac{3}{7}\)
d) \(\sqrt{\dfrac{39^2}{91^2}}=\sqrt{\left(\dfrac{39}{91}\right)^2}=\left|\dfrac{39}{91}\right|=\dfrac{39}{91}=\dfrac{3}{7}\)
\(\sqrt[]{2^2+\sqrt[]{4^2}+\sqrt[]{\left(-6\right)^2}+\sqrt[]{\left(-8\right)^2}}\)
\(=\sqrt[]{4+4+6+8}=\sqrt[]{22}\)
\(\sqrt{2}=1,414213562...\)