Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\sqrt{\frac{289+4\sqrt{72}}{16}}+\sqrt{\frac{129}{16}+\sqrt{2}}\)
\(=\sqrt{\frac{288+2\times12\sqrt{2}+1}{4^2}}+\sqrt{\frac{128+2\sqrt{12}+1}{4^2}}\)
\(=\sqrt{\frac{\left(\sqrt{288}+1\right)^2}{4^2}}+\sqrt{\frac{\left(\sqrt{128}+1\right)^2}{4^2}}\)
\(=\frac{\sqrt{288}+1}{4}+\frac{\sqrt{128}+1}{4}\)
\(=\frac{12\sqrt{2}+8\sqrt{2}+2}{4}\)
\(=\frac{1+10\sqrt{2}}{2}\)
2/
a) Ta có:
\(3\sqrt{2}=\sqrt{3^2\cdot2}=\sqrt{9\cdot2}=\sqrt{18}\)
\(2\sqrt{3}=\sqrt{2^2\cdot3}=\sqrt{4\cdot3}=\sqrt{12}\)
Mà: \(12< 18\Rightarrow\sqrt{12}< \sqrt{18}\Rightarrow2\sqrt{3}< 3\sqrt{2}\)
b) Ta có:
\(4\sqrt[3]{5}=\sqrt[3]{4^3\cdot5}=\sqrt[3]{320}\)
\(5\sqrt[3]{4}=\sqrt[3]{5^3\cdot4}=\sqrt[3]{500}\)
Mà: \(320< 500\Rightarrow\sqrt[3]{320}< \sqrt[3]{500}\Rightarrow4\sqrt[3]{5}< 5\sqrt[3]{4}\)
3/
a)ĐKXĐ: \(x\ne1;x\ge0\)
b) \(A=\left(1-\dfrac{x-\sqrt{x}}{\sqrt{x}-1}\right)\left(1+\dfrac{x+\sqrt{x}}{\sqrt{x}+1}\right)\)
\(A=\left[1-\dfrac{\sqrt{x}\left(\sqrt{x}-1\right)}{\sqrt{x}-1}\right]\left[1+\dfrac{\sqrt{x}\left(\sqrt{x}+1\right)}{\sqrt{x}+1}\right]\)
\(A=\left(1-\sqrt{x}\right)\left(1+\sqrt{x}\right)\)
\(A=1^2-\left(\sqrt{x}\right)^2\)
\(A=1-x\)
Đặt \(a=\frac{1-\sqrt{5}}{2},b=\frac{1+\sqrt{5}}{2}\)
Ta có \(a+b=1,a-b=-\sqrt{5},ab=-1\)
Ta sẽ tính từ từ. Cụ thể
\(a^2+b^2=\left(a+b\right)^2-2ab=3\)
\(a^2-b^2=\left(a+b\right)\left(a-b\right)=-\sqrt{5}\)
\(a^4+b^4=\left(a^2+b^2\right)^2-2\left(ab\right)^2=7\)
\(a^4-b^4=\left(a^2+b^2\right)\left(a^2-b^2\right)=-3\sqrt{5}\)
\(a^8+b^8=\left(a^4+b^4\right)^2-2\left(ab\right)^4=47\)
\(a^8-b^8=\left(a^4+b^4\right)\left(a^4-b^4\right)=-21\sqrt{5}\)
\(a^{16}-b^{16}=\left(a^8+b^8\right)\left(a^8-b^8\right)=-987\sqrt{5}\)
Dễ ẹt :
\(\sqrt{16-2\sqrt{55}}\)
\(=\sqrt{5-2\sqrt{5}\sqrt{11}+11}\)
\(=\sqrt{\left(\sqrt{5}-\sqrt{11}\right)^2}\)
\(=\sqrt{5}-\sqrt{11}\)