Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\dfrac{1}{x^2+9x+20}+\dfrac{1}{x^2+11x+30}+\dfrac{1}{x^2+13x+42}=\dfrac{1}{18}\)
\(\dfrac{1}{\left(x+4\right)\left(x+5\right)}+\dfrac{1}{\left(x+5\right)\left(x+6\right)}+\dfrac{1}{\left(x+6\right)\left(x+7\right)}=\dfrac{1}{18}\)
\(\dfrac{1}{x+4}-\dfrac{1}{x+5}+\dfrac{1}{x+5}-\dfrac{1}{x+6}+\dfrac{1}{x+6}-\dfrac{1}{x+7}=\dfrac{1}{18}\)
\(\dfrac{1}{x+4}-\dfrac{1}{x+7}=\dfrac{1}{18}\)
\(\dfrac{18\left(x+7-x-4\right)}{18\left(x+4\right)\left(x+7\right)}=\dfrac{\left(x+4\right)\left(x+7\right)}{18\left(x+4\right)\left(x+7\right)}\)
\(18.3=\left(x+4\right)\left(x+7\right)\)
\(x^2+11x+28-54=0\)
\(x^2+11x-26=0\)
\(\left(x-2\right)\left(x+13\right)=0\)
\(\left[{}\begin{matrix}x=2\\x=-13\end{matrix}\right.\)
Theo đề x < 0 nên x = -13
Câu hỏi của Duong Thi Nhuong TH Hoa Trach - Phong GD va DT Bo Trach - Toán lớp 8 | Học trực tuyến
a)
ĐKXĐ: x khác -4;-5;-6;-7
\(\dfrac{1}{x^2+9x+20}+\dfrac{1}{x^2+11x+20}+\dfrac{1}{x^2+13x+42}=\dfrac{1}{8}\\ \Leftrightarrow\dfrac{1}{\left(x+4\right)\left(x+5\right)}+\dfrac{1}{\left(x+5\right)\left(x+6\right)}+\dfrac{1}{\left(x+6\right)\left(x+7\right)}=\dfrac{1}{8}\\ \Leftrightarrow\dfrac{1}{x+4}-\dfrac{1}{x+5}+\dfrac{1}{x+5}-\dfrac{1}{x+6}+\dfrac{1}{x+6}-\dfrac{1}{x+7}=\dfrac{1}{8}\\ \Leftrightarrow\dfrac{1}{x+4}-\dfrac{1}{x+7}=\dfrac{1}{8}\\ \Leftrightarrow\dfrac{3}{\left(x+4\right)\left(x+7\right)}=\dfrac{1}{8}\\ \Rightarrow x^2+11x+28=24\\ \Leftrightarrow x^2+11x+4=0\)
ta có: \(\Delta=11^2-4.1.4=105>0\) nên phương trình có 2 nghiệm phân biệt.
\(\Rightarrow\left[{}\begin{matrix}x_1=\dfrac{-11-\sqrt{105}}{2}\\x_2=\dfrac{-11+\sqrt{105}}{2}\end{matrix}\right.\)
Đk:\(x\ne-4;x\ne-5;x\ne-6;x\ne-7\)
\(\Rightarrow\frac{1}{\left(x+4\right)\left(x+5\right)}+\frac{1}{\left(x+5\right)\left(x+6\right)}+\frac{1}{\left(x+6\right)\left(x+7\right)}=\frac{1}{18}\)
\(\Rightarrow\frac{1}{x+4}-\frac{1}{x+5}+\frac{1}{x+5}-\frac{1}{x+6}+\frac{1}{x+6}-\frac{1}{x+7}=\frac{1}{18}\)
\(\Rightarrow\frac{1}{x+4}-\frac{1}{x+7}=\frac{1}{18}\)
\(\Rightarrow\frac{3}{x^2+11x+28}=\frac{1}{18}\)
\(\Rightarrow x^2+11x+28=54\)
\(\Rightarrow x^2+11x-26=0\)
\(\Rightarrow\left(x-2\right)\left(x+13\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x=2\\x=-13\end{cases}}\)
Vậy....
\(\dfrac{1}{\left(x^2+13x+42\right)}=\dfrac{1}{\left(\left(x+7\right)\left(x+6\right)\right)}\)
\(\dfrac{1}{\left(x^2+11x+30\right)}=\dfrac{1}{\left(\left(x+5\right)\left(x+6\right)\right)}\)
\(\dfrac{1}{\left(x^2+9x+20\right)}=\dfrac{1}{\left(\left(x+5\right)\left(x+4\right)\right)}\)
Chuyển 1/18 sang ta sẽ có: \(\dfrac{1}{\left(\left(x+7\right)\left(x+6\right)\right)}+\dfrac{1}{\left(\left(x+5\right)\left(x+6\right)\right)}+\dfrac{1}{\left(\left(x+5\right)\left(x+4\right)\right)}-\dfrac{1}{18}=0\)
Mẫu số chung sẽ là \(18\left(x+4\right)\left(x+5\right)\left(x+6\right)\left(x+7\right)\)
Quy đồng và rút gọn ta sẽ được biểu thức: \(\dfrac{-\left(x^2+11x-26\right)}{\left(18\left(x+4\right)\left(x+7\right)\right)}=0\)
Giải phương trình \(-x^2-11x+26\)
Ta sẽ có nghiệm là x = -13 và x = 2.
ĐK : \(\left(x\ne-4;x\ne-5;x\ne-6;x\ne-7\right)\)
\(\Rightarrow\frac{1}{\left(x+4\right)\left(x+5\right)}+\frac{1}{\left(x+5\right)\left(x+6\right)}+\frac{1}{\left(x+6\right)\left(x+7\right)}=\frac{1}{18}\)
\(\Rightarrow\frac{1}{x+4}-\frac{1}{x+5}+\frac{1}{x+5}-\frac{1}{x+6}+\frac{1}{x+6}-\frac{1}{x+7}=\frac{1}{18}\)
\(\Rightarrow\frac{1}{x+4}-\frac{1}{x+7}=\frac{1}{18}\)
\(\Rightarrow\frac{3}{x^2+11x+28}=\frac{1}{18}\)
\(\Leftrightarrow x^2+11x+28=54\)
\(\Rightarrow x^2+11x-26=0\)
\(\Rightarrow\left(x-2\right)\left(x+13\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x=2\\x=-13\end{cases}}\)
Vậy pt có tập nghiệm là \(S=\left\{2;-13\right\}\)
\(a,A=\left(\dfrac{1}{\sqrt{x}+1}-\dfrac{2\sqrt{x}-2}{x\sqrt{x}-\sqrt{x}+x-1}\right):\left(\dfrac{1}{\sqrt{x}-1}-\dfrac{2}{x-1}\right)\left(dk:x\ge0,x\ne1\right)\)
\(=\left(\dfrac{1}{\sqrt{x}+1}-\dfrac{2\sqrt{x}-2}{\sqrt{x}\left(x-1\right)+\left(x-1\right)}\right):\left(\dfrac{1}{\sqrt{x}-1}-\dfrac{2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\right)\)
\(=\left(\dfrac{1}{\sqrt{x}+1}-\dfrac{2\sqrt{x}-2}{\left(x-1\right)\left(\sqrt{x}+1\right)}\right):\left(\dfrac{\sqrt{x}+1-2}{x-1}\right)\)
\(=\dfrac{x-1-2\sqrt{x}+2}{\left(x-1\right)\left(\sqrt{x}+1\right)}.\dfrac{x-1}{\sqrt{x}-1}\)
\(=\dfrac{x-2\sqrt{x}+1}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\)
\(=\dfrac{\left(\sqrt{x}-1\right)^2}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\)
\(=\dfrac{\sqrt{x}-1}{\sqrt{x}+1}\)
\(b,x-3\sqrt{x}+2=0\Leftrightarrow x-\sqrt{x}-2\sqrt{x}+2=0\Leftrightarrow\sqrt{x}\left(\sqrt{x}-1\right)-2\left(\sqrt{x}-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x}-1=0\\\sqrt{x}-2=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\left(ktm\right)\\x=4\left(tm\right)\end{matrix}\right.\)
Thay \(x=4\) vào A :
\(A=\dfrac{\sqrt{4}-1}{\sqrt{4}+1}=\dfrac{2-1}{2+1}=\dfrac{1}{3}\)
=\(\dfrac{1}{\left(x+4\right)\left(x+5\right)}+\dfrac{1}{\left(x+5\right)\left(x+6\right)}+\dfrac{1}{\left(x+6\right)\left(x+7\right)}=\dfrac{1}{18}\\ =>\dfrac{1}{x+4}-\dfrac{1}{x+7}=\dfrac{1}{18}\\ \left(=\right)\dfrac{x+7-x-4}{\left(x+4\right)\left(x+7\right)}=\dfrac{1}{18}\\ gpt=>x=2\)
2