Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a. \(x=\left\{4;9;16\right\}\)
b. \(x=1\)
c. \(x=\left\{-2;-1\right\}\)
a3+b3+c3=3abc
<=>(a+b)3-3ab(a+b)-3abc+c3=0
<=>(a+b+c)[(a+b)2-(a+b)c+c2]-3ab.(a+b+c)=0
<=>(a+b+c)(a2+b2+c2-ab-bc-ac)=0
<=>(a+b+c)(2a2+2b2+2c2-2ab-2bc-2ac)=0
<=>(a+b+c)[(a-b)2+(b-c)2+(c-a)2]=0
<=>a+b+c=0 [(a-b)2+(b-c)2+(c-a)2 khác 0]
=>a2+b2-c2=-2ab;b2+c2-a2=-2bc;c2+a2-b2=-2ac
Suy ra : P=\(-\left(\dfrac{1}{2ab}+\dfrac{1}{2bc}+\dfrac{1}{2ac}\right)=-\dfrac{a+b+c}{2abc}=0\)
Ta có \(\sqrt{x}-\sqrt{x-1}< \dfrac{1}{100}\Leftrightarrow\dfrac{1}{\sqrt{x}+\sqrt{x-1}}< \dfrac{1}{100}\Leftrightarrow\sqrt{x}+\sqrt{x-1}>100\).
Đến đây dùng pp kẹp ta tìm được số nguyên dương x nhỏ nhất thỏa mãn là x = 2501.
Áp dụng bđt Cô-si vào 2 số dương có:
\(\dfrac{1}{x}+\dfrac{1}{y}\ge\dfrac{2}{\sqrt{xy}}\Rightarrow\dfrac{1}{2}\ge\dfrac{2}{\sqrt{xy}}\Rightarrow\sqrt{xy}\ge4\)
\(\Rightarrow\sqrt{x}+\sqrt{y}\ge2\sqrt{\sqrt{xy}}=2\sqrt{4}=4\)
Dấu = xảy ra \(\Leftrightarrow x=y=4\)
`1/x+1/y>=2/(\sqrt{xy})`
`<=>1/2>=2/(\sqrt{xy})`
`<=>\sqrt{xy}>=4`
`=>\sqrt{x}+\sqrt{y}>=2.2=4`
Dấu "=" xảy ra khi `x=y=4`
Áp dụng bất đẳng thức Bunhiacopxki ta có:
\(\left(x\cdot1+y\cdot1\right)^2\le\left(1^2+1^2\right)\left(x^2+y^2\right)=2\Rightarrow x+y\le\sqrt{2}\)
Áp dụng bất đẳng thức Bunhiacopxki ta có:
\(\left(x\sqrt{1+y}+y\sqrt{1+x}\right)^2\le\left(x^2+y^2\right)\left(1+y+1+x\right)=x+y+2=2+\sqrt{2}\)
\(\Rightarrow x\sqrt{y+1}+y\sqrt{x+1}\ge\sqrt{2+\sqrt{2}}\)
Dấu = xảy ra khi \(x=y=\dfrac{1}{\sqrt{2}}\)
Đề bài sai/thiếu, biểu thức này không thể tồn tại max nếu x; y chỉ là số thực (lấy ví dụ, \(x=y=-1000\), như vậy \(2x+3y< 0\le7\) phù hợp điều kiện, nhưng P lại ra 1 kết quả khổng lồ)
P chỉ tồn tại max khi x; y có thêm điều kiện (ví dụ x; y dương hoặc không âm)
Khi đó: \(2x+3y\le7\Rightarrow3y\le7-2x\Rightarrow y\le\dfrac{7}{3}-\dfrac{2}{3}x\)
Từ đó ta có:
\(P=x+y\left(x+1\right)\le x+\left(\dfrac{7}{3}-\dfrac{2}{3}x\right)\left(x+1\right)\)
\(\Rightarrow P\le-\dfrac{2}{3}x^2+\dfrac{8}{3}x+\dfrac{7}{3}=-\dfrac{2}{3}\left(x-2\right)^2+5\le5\)
\(P_{max}=5\) khi \(\left(x;y\right)=\left(2;1\right)\)
\(VT=\left(x+\dfrac{1}{x}\right)^2+\left(y+\dfrac{1}{y}\right)^2\ge\dfrac{1}{2}\left(x+\dfrac{1}{x}+y+\dfrac{1}{y}\right)^2\)
\(VT\ge\dfrac{1}{2}\left(x+y+\dfrac{1}{x}+\dfrac{1}{y}\right)^2\ge\dfrac{1}{2}\left(x+y+\dfrac{4}{x+y}\right)^2=\dfrac{25}{2}\)
Dấu "=" xảy ra khi \(x=y=\dfrac{1}{2}\)
2,25 + x = 3,76 - 5,49
2,25 + x = -1,73
x = (-1,73) - 2,25
x = 0,52 .