Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
a) Các số nguyên tố là 37;67 vì mỗi số này chỉ có hai ước là 1 và chính nó
b) Các số là hợp số là 57;77 và 87 vì mỗi số này có nhiều hơn 2 ước
Câu 2:
a) \(17\cdot19+23\cdot29\) là hợp số
b) \(5\cdot8-3\cdot13\) không là số nguyên tố cũng không là hợp số
c) \(143\cdot144\cdot145-145\cdot144\cdot143\) không là số nguyên tố cũng không là hợp số
Bài 1 :
a) \(123456789+729=\text{123457518}⋮2\)
⇒ Số trên là hợp số
b)\(5.7.8.9.11-132=\text{27588}⋮2\)
⇒ Số trên là hợp số
Bài 2 :
a) \(P+2\&P+4\) ;à số nguyên tố
\(\Rightarrow\dfrac{P+2}{P+4}=\pm1\)
\(\Rightarrow\left[{}\begin{matrix}\dfrac{P+2}{P+4}=1\\\dfrac{P+2}{P+4}=-1\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}P+2=P+4\\P+2=-P-4\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}0.P=2\left(x\in\varnothing\right)\\2.P=-6\end{matrix}\right.\)
\(\Rightarrow P=-3\)
Câu b tương tự
a,123456789+729=123457518(hợp số)
b,5x7x8x9x11-132=27588(hợp số)
Bài 2,
a,Nếu P=2=>p+2=4 và p+4=6 (loại)
Nếu P=3=>p+2=5 và p+4=7(t/m)
P>3 => P có dạng 3k+1 hoặc 3k+2(k ϵn,k>0)
Nếu p=3k+1=>p+2=3k+3 ⋮3( loại)
Nếu p=3k+2=>p+4=3k+6⋮3(loại)
Vậy p=3 thỏa mãn đề bài
b,Nếu p=2=>p+10=12 và p+14=16(loại)
Nếu p=3=>p+10=13 và p+14=17(t/m)
Nếu p >3=>p có dạng 3k+1 hoặc 3k+2
Nếu p=3k+1=>p+14=3k+15⋮3(loại)
Nếu p=3k+2=>p+10=3k+12⋮3(loại)
Vậy p=3 thỏa mãn đề bài.
\(A=2011.2012.2013.2014+1\)
\(\Rightarrow A=\overline{.....4}+1\)
\(\Rightarrow A=\overline{.....5}⋮5\)
Vậy \(A\) là hợp số.
105 + 11
Ta có:
105 có tổng các chữ số là: 1+0+0+0... = 1 chia 3 dư 1
11 chia 3 dư 2
=> 105 + 11 chia hết cho 3
=> 105 + 11 là h số
a) là SNT
b) là SNT
tick nhé