Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)Ta áp dụng tính chất sau:
Nếu a<b=>a/b<(a+k)/(b+k) (k thuộc N*)
Vì 1013+1<1014+1=>B=1013+1/1014+1<1013+1+9/1014+1+9
=>B<1013+10/1014+10
=>B<10.(1012+1)/10.(1013+1)
=>B<1012+1/1013+1=A
=>B<A
b)Ta áp dụng tính chất sau:
Nếu a>b=>a/b>(a+k)/(b+k) (k thuộc N*)
Vì 102015+1>102014+1=>B=102015+1/102014+1>102015+1+99/102014+1+99
=>B>102015+100/102014+100
=>B>100.(102013+1)/100.(102012+1)
=>B>102013+1/102012+1=A
=>B>A
Mình làm cho câu đầu tiên thôi, câu thứ hai cũng tương tự nha:
Ta có:
A.10 = \(\frac{10^{12}+10}{10^{12}+1}\) B.10 = \(\frac{10^{14}+10}{10^{14}+1}\)
=>A.10 = \(\frac{10^{12}+1+9}{10^{12}+1}\) =>B.10 = \(\frac{10^{14}+1+9}{10^{14}+1}\)
=>A.10 = 1 + \(\frac{9}{10^{12}+1}\) =>B.10 = 1 + \(\frac{9}{10^{14}+1}\)
=>A.10 > B.10
=>A > B
Vậy A > B
\(10A=\frac{10\left(10^{11}-1\right)}{10^{12}-1}=\frac{10^{12}-10}{10^{12}-1}=\frac{10^{12}-1-9}{10^{12}-1}=1-\frac{9}{10^{12}-1}\)
\(10B=\frac{10\left(10^{12}-1\right)}{10^{13}-1}=\frac{10^{13}-10}{10^{13}-1}=\frac{10^{13}-1-9}{10^{13}-1}=1-\frac{9}{10^{13}-1}\)
Vì \(10^{13}-1>10^{12}-1\Rightarrow\frac{9}{10^{13}-1}< \frac{9}{10^{12}-1}\Rightarrow-\frac{9}{10^{13}-1}>-\frac{9}{10^{12}-1}\)
\(\Rightarrow1-\frac{9}{10^{13}-1}>1-\frac{9}{10^{12}-1}\Rightarrow10B>10A\Rightarrow B>A\)
\(A=\frac{10^{11}-1}{10^{12}-1}\Leftrightarrow10A=\frac{10^{12}-10}{10^{12}-1}=\frac{10^{12}-1-9}{10^{12}-1}=1-\frac{9}{10^{12}-1}\)
\(B=\frac{10^{12}-1}{10^{13}-1}\Leftrightarrow10B=\frac{10^{13}-10}{10^{13}-1}=\frac{10^{13}-1-9}{10^{13}-1}=1-\frac{9}{10^{13}-1}\)
\(\text{Vì }1-\frac{9}{10^{12}-1}< 1-\frac{9}{10^{13}-1}\Rightarrow10A< 10B\)
\(\Rightarrow A< B\)
Ta có : \(A=\frac{10^{17}+5}{10^{17}-8}=\frac{10^{17}-8+13}{10^{17}-8}=1+\frac{13}{10^{17}-8}\)
Lại có B = \(\frac{10^{17}-13+13}{10^{17}-13}=1+\frac{13}{10^{17}-13}\)
Nhận thấy 1017 - 8 > 1017 - 13
=> \(\frac{13}{10^{17}-8}< \frac{13}{10^{17}-13}\)
=> \(1+\frac{13}{10^{17}-8}< 1+\frac{13}{10^{17}-13}\)
=> A < B
Bài làm
a ) \(A=\frac{9^{99}+1}{9^{100}+1}=\frac{9^{100}+1}{9^{100}+1}-\frac{9}{9^{100}+1}\)
= \(1-\frac{9}{9^{100}+1}\)
\(B=\frac{10^{98}-1}{10^{99}-1}=\frac{10^{99}-1}{10^{99}-1}-\frac{10}{10^{99}-1}\)
= \(1-\frac{10}{10^{99}-1}\)
Vì \(\frac{9}{9^{100}+1}>\frac{10}{10^{99}-1}\)
nên \(1-\frac{9}{9^{100}+1}< 1-\frac{10}{10^{99}-1}\)
\(\Rightarrow A< B\)
Bài làm
b ) \(A=\frac{5^{10}}{1+5+5^2+.....+5^9}=\frac{1+5+5^2+.....+5^9}{1+5+5^2+.....+5^9}+\frac{1+5+5^2+.....+5^8-5^9.4}{1+5+5^2+.....+5^9}\)
= \(1+\frac{1+5+5^2+.....+5^8+5^9.4}{1+5+5^2+.....+5^9}=1+5^9.3\)
\(B=\frac{6^{10}}{1+6+6^2+.....+6^9}=\frac{1+6+6^2+.....+6^9}{1+6+6^2+.....+6^9}+\frac{1+6+6^2+.....+6^8+6^9.5}{1+6+6^2+.....+6^9}\)
= \(1+\frac{1+6+6^2+.....+6^8+6^9.5}{1+6+6^2+.....+6^9}=1+6^9.4\)
Vì \(1+5^9.3< 1+6^9.4\)
nên A < B
Giải như mà mình không chắc nha:
a) \(A=\frac{10^8+1}{10^9+1}\)và \(\frac{10^9+1}{10^{10}+1}\)
Ta có:
\(\frac{10^8+1}{10^9+1}\Leftrightarrow\frac{10^8+1}{10^8+10+1}\Leftrightarrow\frac{1}{10+1}=\frac{1}{11}\)
\(\frac{10^9+1}{10^{10}+1}=\frac{10^8+10+1}{10^8+10+10+1}=\frac{10+1}{10+10+1}=\frac{11}{21}\)
Ta có: \(\frac{1}{11}< \frac{11}{21}\) Vậy ......
b) Bạn giải tương tự nha! Lười lắm :v
So Sánh: B = \(\frac{^{3^{10}.11+3^{10}.5}}{3^9.2^4}\) và C= \(\frac{2^{10}.13+2^{10}.65}{2^8.104}\)
Ta có:
B=\(\frac{3^{10}.\left(11+5\right)}{3^9.2^4}\) = \(\frac{3^{10}.16}{3^9.2^4}\)= \(\frac{3^9.3.16}{3^9.16}\)= 3
C=\(\frac{2^{10}.\left(13+65\right)}{2^8.104}\) =\(\frac{2^{10}.78}{2^8.104}\) = \(\frac{2^8.2^2.78}{2^8.104}\)= \(\frac{4.78}{104}\) = \(\frac{4.78}{4.26}\)=\(\frac{78}{26}\)=3
=>B=C
Bài giải
Ta có :
\(\frac{13}{14}=1-\frac{1}{14}\)
\(\frac{12}{13}=1-\frac{1}{13}\)
Vì \(\frac{1}{14}< \frac{1}{13}\) \(\Rightarrow\text{ }\frac{13}{14}>\frac{12}{13}\)
b, Bài giải
\(A=\frac{10^{10}+5}{10^{10}-1}=\frac{10^{10}-1+6}{10^{10}-1}=\frac{10^{10}-1}{10^{10}-1}+\frac{6}{10^{10}-1}=1+\frac{6}{10^{10}-1}\)
\(B=\frac{10^{10}+4}{10^{10}-2}=\frac{10^{10}-2+6}{10^{10}-2}=\frac{10^{10}-2}{10^{10}-2}+\frac{6}{10^{10}-2}=1+\frac{6}{10^{10}-2}\)
Vì \(\frac{6}{10^{10}-1}>\frac{6}{10^{10}-2}\) \(\Rightarrow\text{ }\frac{10^{10}+5}{10^{10}-1}>\frac{10^{10}+4}{10^{10}-2}\)
\(\Rightarrow\text{ }A>B\)