\(\frac{2018}{2019}+\frac{2019}{2020}+\frac{2020}{2018}\) với 3

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 7 2019

https://olm.vn/hoi-dap/detail/224964577156.html

THAM-KHẢO-NHÉ

THANKS

Ta có:                                                                                                                                                                                                                               \(\frac{2018}{2019}\)\(\frac{2019}{2020}\)+\(\frac{2020}{2018}\)= (1-\(\frac{1}{2019}\)) + ( 1 -\(\frac{1}{2020}\)) + ( 1 - \(\frac{1}{2018}\))                                                                                                                                           = ( 1+1+1) - (\(\frac{1}{2019}+\frac{1}{2020}+\frac{1}{2018}\))                                                                                                                                            = 3 - (\(\frac{1}{2019}+\frac{1}{2020}+\frac{1}{2018}\))                                                                                                                                                   \(\Leftrightarrow\)3 - (\(\frac{1}{2019}+\frac{1}{2020}+\frac{1}{2018}\)) <3                                                                                    Vậy \(\frac{2018}{2019}+\frac{2019}{2020}+\frac{2020}{2018}\)<    3

13 tháng 8 2019

A=1-1/2019+1-1/2020+1+2/2018

=>A=(1+1+1)+(1/2018-1/2009)+(1/2018-1/2020)

                    Vì 1/2018>1/2019 và 1/2028>1/2020

=>A>3

 Vậy a >A

 study well

 k nha ủng hộ mk nhé

13 tháng 8 2019

Mình cũng làm giống thế . nhưng con bạn mình làm a < 3 nên mình không chắc chắn

12 tháng 8 2019

Trả lời

So sánh cái nào vs cái nào ạ

sao chỉ thấy có 1 vế ạ !

12 tháng 8 2019

vi 2018/2019<1

   2019/2020<1

   2020/2021<1

nen 2018/2019 + 2019/2020 + 2020/2021<1+1+1=3

25 tháng 7 2018

Bạn có thể tham khảo tại đây nhé : https://

25 tháng 7 2018

Sorry mk nhầm

12 tháng 8 2019

\(A=\frac{2020}{2019}-\frac{2019}{2018}+\frac{1}{2019\times2018}\)

\(=\frac{2020\times2018}{2019\times2018}-\frac{2019\times2019}{2019\times2018}+\frac{1}{2019\times2018}\)

\(=\frac{2020\times2018-2019\times2019+1}{2019\times2018}\)

\(=\frac{\left(2019+1\right)\times\left(2019-1\right)-2019\times2019+1}{2019\times2018}\)

\(=\frac{2019\times2019-2019+2019-1-2019\times2019+1}{2019\times2018}\)

\(=\frac{2019\times2019-1-\left(2019\times2019-1\right)}{2019\times2018}\)

\(=\frac{0}{2019\times2018}\)

\(=0\)

Vậy A = 0 

12 tháng 8 2019

ta có

A=2020*2018/2019*2018-2019*2019/2018*2019+1/2018*2019

=>A*(2018*2019)=2020*2018-2019*2019+1

=>A*(2018*2019)=(2019+1)*2018-(2018+1)*2019+1

=>A*(2018*2019)=(2019*2018+2018)-(2018*2019+2019)+1

=>A*(2018*2019)=2019*2018+2018-2018*2019-2019+1

=>A*(2018*2019)=2018-2019+1

=>A*(2018*2019)=2018+1-2019

=>A*(2018*2019)=0

=>A=0/(2018*2019)

=>A=0

19 tháng 7 2020

\(\left(2020\frac{2018}{2021}-2019\frac{20182018}{20212021}\right):\frac{2018}{2021}\)

\(=\left(2020\frac{2018}{2021}-2019\frac{2018}{2021}\right):\frac{2018}{2021}\)

\(=1:\frac{2018}{2021}=\frac{2021}{2018}\)

19 tháng 7 2020

\(\left(2020\frac{2018}{2021}-2019\frac{20182018}{20212021}\right)\div\frac{2018}{2021}\)

\(=\left(2020\frac{2018}{2021}-2019\frac{2018}{2021}\right)\div\frac{2018}{2021}\)

\(=1\div\frac{2018}{2021}\)

\(=\frac{2021}{2018}\)

3 tháng 8 2020

\(\frac{2019}{2020}+\frac{2020}{2019}=1-\frac{1}{2020}+1+\frac{1}{2019}\)

\(=2+\frac{1}{2019}-\frac{1}{2020}\)

Vì \(\frac{1}{2019}>\frac{1}{2020}\Rightarrow\frac{1}{2019}-\frac{1}{2020}>0\)

\(\Rightarrow2+\frac{1}{2019}-\frac{1}{2020}>2\)

\(\frac{444443}{222222}=\frac{444444}{222222}-\frac{1}{222222}=2-\frac{1}{222222}< 2\)

\(\Rightarrow\frac{2019}{2020}+\frac{2020}{2019}>\frac{444443}{222222}\)

19 tháng 5 2021

ối dồi ôi may mà tôi ko đặt tên là hanny đấy 

4 tháng 1 2019

= 2018 phải không ạ?

4 tháng 1 2019

Ta có : \(\frac{1}{n}+\frac{2020}{2019}=\frac{2019}{2018}+\frac{1}{n+1}\)

=> \(\frac{1}{n}-\frac{1}{n+1}=\frac{2019}{2018}-\frac{2020}{2019}\)

=> \(\frac{n+1}{n\left(n+1\right)}-\frac{n}{\left(n+1\right)n}=\frac{1}{4074342}\)

=> \(\frac{1}{n\left(n+1\right)}=\frac{1}{2018.2019}\)

=> n(n + 1) = 2018.2019

=> n(n + 1) = 2018.(2018 + 1)

=> n = 2018

25 tháng 7 2018

\(\frac{2017}{2018}\)và   \(\frac{2019}{2020}\)

Ta có : \(1-\frac{2017}{2018}=\frac{1}{2018};1-\frac{2019}{2020}=\frac{1}{2020}\)

Vì \(\frac{1}{2018}>\frac{1}{2020}\)nên \(\frac{2017}{2018}< \frac{2019}{2020}\)

Cái này là so sánh bằng phần bù của đơn vị nha bn !

Học tốt #

25 tháng 7 2018

\(\frac{2017}{2018};\frac{2018}{2019};\frac{2019}{2020}\)

 \(\Rightarrow\frac{2017}{2018}< \frac{2019}{2020}\)

11 tháng 6 2018

Bài 1:

Ta có:

\(N=\frac{2017+2018}{2018+2019}=\frac{2017}{2018+2019}+\frac{2018}{2018+2019}\)

Do \(\hept{\begin{cases}\frac{2017}{2018+2019}< \frac{2017}{2018}\\\frac{2018}{2018+2019}< \frac{2018}{2019}\end{cases}\Rightarrow\frac{2017}{2018+2019}+\frac{2018}{2018+2019}< \frac{2017}{2018}+\frac{2018}{2019}}\)

                                                     \(\Leftrightarrow N< M\)

Vậy \(M>N.\)

Bài 2:

Ta có:

\(A=\frac{2017}{987653421}+\frac{2018}{24681357}=\frac{2017}{987654321}+\frac{2017}{24681357}+\frac{1}{24681357}\)

\(B=\frac{2018}{987654321}+\frac{2017}{24681357}=\frac{1}{987654321}+\frac{2017}{987654321}+\frac{2017}{24681357}\)

Do \(\hept{\begin{cases}\frac{2017}{987654321}+\frac{2017}{24681357}=\frac{2017}{987654321}+\frac{2017}{24681357}\\\frac{1}{24681357}>\frac{1}{987654321}\end{cases}}\)

\(\Rightarrow\frac{2017}{987654321}+\frac{2017}{24681357}+\frac{1}{24681357}>\frac{1}{987654321}+\frac{2017}{987654321}+\frac{2017}{24681357}\)

                                                                     \(\Leftrightarrow A>B\)

Vậy \(A>B.\)

Bài 3:

\(\frac{2016}{2017}+\frac{2017}{2018}+\frac{2018}{2019}+\frac{2019}{2016}=1-\frac{1}{2017}+1-\frac{1}{2018}+1-\frac{1}{2019}+1+\frac{3}{2016}\)

                                                                \(=1+1+1+1-\frac{1}{2017}-\frac{1}{2018}-\frac{1}{2019}+\frac{3}{2016}\)

                                                                \(=4-\left(\frac{1}{2017}+\frac{1}{2018}+\frac{1}{2019}-\frac{3}{2016}\right)\)

Do \(\hept{\begin{cases}\frac{1}{2017}< \frac{1}{2016}\\\frac{1}{2018}< \frac{1}{2016}\\\frac{1}{2019}< \frac{1}{2016}\end{cases}\Rightarrow\frac{1}{2017}+\frac{1}{2018}+\frac{1}{2019}< \frac{1}{2016}+\frac{1}{2016}+\frac{1}{2016}=\frac{3}{2016}}\)

\(\Rightarrow\frac{1}{2017}+\frac{1}{2018}+\frac{1}{2019}-\frac{3}{2016}\)âm

\(\Rightarrow4-\left(\frac{1}{2017}+\frac{1}{2018}+\frac{1}{2019}-\frac{3}{2016}\right)>4\)

Vậy \(\frac{2016}{2017}+\frac{2017}{2018}+\frac{2018}{2019}+\frac{2019}{2016}>4.\)

Bài 4:

\(\frac{1991.1999}{1995.1995}=\frac{1991.\left(1995+4\right)}{\left(1991+4\right).1995}=\frac{1991.1995+1991.4}{1991.1995+4.1995}\)

Do \(\hept{\begin{cases}1991.1995=1991.1995\\1991.4< 1995.4\end{cases}}\Rightarrow1991.1995+1991.4< 1991.1995+1995.4\)

\(\Rightarrow\frac{1991.1995+1991.4}{1991.1995+4.1995}< \frac{1991.1995+1995.4}{1991.1995+4.1995}=1\)

\(\Rightarrow\frac{1991.1999}{1995.1995}< 1\)

Vậy \(\frac{1991.1999}{1995.1995}< 1.\)