Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(243^5=\left(3^5\right)^5=3^{25}\)
\(3\cdot27^5=3\cdot\left(3^3\right)^5=3\cdot3^{15}=3^{16}\)
mà \(3^{25}>3^{16}\)
nên \(243^5>3\cdot27^5\)
b) \(625^5=\left(5^4\right)^5=5^{20}\)
\(125^7=\left(5^3\right)^7=5^{21}\)
mà \(5^{20}< 5^{21}\)
nên \(625^5< 125^7\)
c) \(202^{303}=\left(202^3\right)^{101}=8242408^{101}\)
\(303^{202}=\left(303^2\right)^{101}=91809^{101}\)
mà \(8242408^{101}>91809^{101}\)
nên \(202^{303}>303^{202}\)
a: \(11^{14}< 11^{15}\)
b: \(4^{300}=64^{100}\)
\(3^{400}=81^{100}\)
mà 64<81
nên \(4^{300}< 3^{400}\)
a, Có 3 = (3) = 9 và 2 = (2) = 8 => 3 > 2
b, Có 6 = (6) = 36 => 6 > 12
37,37 x 5959,59 = 37 x 1,01 x 59 x 101,01 = 37 x 59 x 1,01 x 101,01
59,59 x 3737,37 = 59 x 1,01 x 37 x 101,01 = 37 x 59 x 1,01 x 101,01
=> 37,37 x 5959,59 = 59,59 x 3737,37
Kick mik nha
`3^(2 + n) và 2^(3 + n) `
`3^(2 + n) = 3^2 xx 3^n = 9 xx 3^n`
`2^(3 + n) = 2^3 xx 2^n = 8 xx 2^n`
ta thấy `9>8 ; 3^n > 2^n `
vậy `3^(2 + n) > 2^(3 + n) `
a) 3^2 và 3.2
3^2=9
3.2=6
-> 3^2>3.2
b)2^3 và 3^2
2^3=8
3^2=9
-> 2^3<3^2
c) 3^3 và 3^4
Vì hai số có cùng cơ số nên ta so sánh số mũ
3<4
-> 3^3<3^4
a)ta có 32=9 ; 3.2=6 => 32 > 3.2
b)ta có 23=8 ; 32=9 => 23 < 32
c) ta có 33 và 34
vì 2 số đều cùng 1 cơ số
mà cơ số đầu có số mũ = 3,cơ số còn lại có lũy thừa =4
=> 3<4
=> 33<34
a) Ta có:
\(\dfrac{16}{9}\)=\(\dfrac{48}{27}\) \(\dfrac{24}{13}=\dfrac{48}{26}\)
Vì 27>26
➝\(\dfrac{48}{27}>\dfrac{48}{26}hay\dfrac{16}{9}>\dfrac{24}{13}\)
So sánh:
a) 16/9 và 24/13
Ta có \(\dfrac{16}{9}=\dfrac{208}{117}\) và \(\dfrac{24}{13}=\) \(\dfrac{216}{117}\)
\(\Rightarrow\dfrac{216}{117}>\dfrac{208}{117}\Rightarrow\dfrac{24}{13}>\dfrac{16}{9}\)
b) 27/82 và 26/75
Ta có \(\dfrac{27}{82}\approx0,33\) và \(\dfrac{26}{75}\approx0,35\)
\(\Rightarrow9,35>0,33\Rightarrow\dfrac{26}{75}>\dfrac{27}{82}\)
\(A=1+2+2^2+...+2^{2022}\)
\(\Rightarrow2A=2+2^2+...+2^{2023}\)
\(\Rightarrow2A-A=2^{2023}-1\)
\(\Rightarrow A=2^{2023}-1\)
\(\Rightarrow A< 2^{2023}=2^2.2^{2021}=4.2^{2021}< 5^{2021}\)
\(\Rightarrow A< B\)
a) 536 và 1124
Ta có: 536= (53)12=12512 (1)
1124=(112)12=12112 (2)
Từ (1) và (2) => 536>1124
tương tự.....
Đáp án là :
câu 20 :625 < 1257
câu 21 :536 > 1124
câu 22 :32n < 23n
câu 23 :523 < 6.522
câu 24 :1124 <19920
câu 25 :399 > 112
\(A=\dfrac{1999^{1999}+1}{1999^{1998}+1}\)
\(\dfrac{1}{1999}A=\dfrac{1999^{1999}+1}{1999^{1999}+1999}\)
\(\dfrac{1}{1999}A=\dfrac{1999^{1999}}{1999^{1999}}-\dfrac{1998}{1999^{1999}+1999}\)
\(\dfrac{1}{1999}A=1-\dfrac{1998}{1999^{1999}+1999}\)
\(B=\dfrac{1999^{2000}+1}{1999^{1999}+1}\)
\(\dfrac{1}{1999}B=\dfrac{1999^{2000}+1}{1999^{2000}+1999}\)
\(\dfrac{1}{1999}B=\dfrac{1999^{2000}}{1999^{2000}}-\dfrac{1998}{1999^{2000}+1999}\)
\(\dfrac{1}{1999}B=1-\dfrac{1998}{1999^{2000}+1999}\)
Vì \(\dfrac{1998}{1999^{1999}+1999}>\dfrac{1998}{1999^{2000}+1999}=>\dfrac{1}{1999}A< \dfrac{1}{1999}B=>A< B\)
\(A=\dfrac{1999^{1999}+1}{1999^{1998}+1}=\dfrac{\left(1999^{1999}+1\right)^2}{\left(1999^{1998}+1\right)\left(1999^{1999}+1\right)}\)
\(A=\dfrac{\left(1999^{1999}\right)^2+2.1999^{1999}+1}{\left(1999^{1998}+1\right)\left(1999^{1999}+1\right)}\left(1\right)\)
\(B=\dfrac{1999^{2000}+1}{1999^{1999}+1}=\dfrac{\left(1999^{2000}+1\right)\left(1999^{1998}+1\right)}{\left(1999^{1998}+1\right)\left(1999^{1999}+1\right)}\)
\(B=\dfrac{\left(1999.1999^{1999}+1\right)\left(\dfrac{1}{1999}.1999^{1999}+1\right)}{\left(1999^{1998}+1\right)\left(1999^{1999}+1\right)}\)
\(B=\dfrac{\left(1999^{1999}\right)^2+1999.1999^{1999}+\dfrac{1}{1999}.1999^{1999}+1}{\left(1999^{1998}+1\right)\left(1999^{1999}+1\right)}\)
\(B=\dfrac{\left(1999^{1999}\right)^2+\left(1999+\dfrac{1}{1999}\right).1999^{1999}+1}{\left(1999^{1998}+1\right)\left(1999^{1999}+1\right)}\left(2\right)\)
mà \(\left(1999+\dfrac{1}{1999}\right)>2\)
\(\left(1\right).\left(2\right)\Rightarrow A< B\)
a/
\(625^5=\left(5^4\right)^5=5^{20}\) và \(125^7=\left(5^3\right)^7=5^{21}\)
\(5^{20}