Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : \(\sqrt{3}-\sqrt{2}=\dfrac{\left(\sqrt{3}-\sqrt{2}\right)\left(\sqrt{3}+\sqrt{2}\right)}{\sqrt{3}+\sqrt{2}}=\dfrac{1}{\sqrt{3}+\sqrt{2}}>\dfrac{1}{\sqrt{4}+\sqrt{3}}=\sqrt{4}-\sqrt{3}\Rightarrow\sqrt{3}-\sqrt{2}>\sqrt{4}-\sqrt{3}\Rightarrow2\sqrt{3}>\sqrt{4}+\sqrt{2}\)
Làm tương tự : \(2\sqrt{5}>\sqrt{4}+\sqrt{6};2\sqrt{7}>\sqrt{6}+\sqrt{8},...,2\sqrt{19}>\sqrt{18}+\sqrt{20}\)
Cộng từng BĐT trên , ta được :
\(2\sqrt{3}+2\sqrt{5}+...+2\sqrt{19}>\sqrt{4}+\sqrt{2}+\sqrt{4}+\sqrt{6}+...+\sqrt{18}+\sqrt{20}=2\sqrt{4}+2\sqrt{6}+...+2\sqrt{18}+\sqrt{20}+\sqrt{2}\)
\(\Leftrightarrow A-2\sqrt{1}>B-\sqrt{2}\)
\(\Leftrightarrow A-B>2-\sqrt{2}>0\Rightarrow A>B\)
1) \(\sqrt{12}\)+\(5\sqrt{3}-\sqrt{48}\)
= \(2\sqrt{3}+5\sqrt{3}-4\sqrt{3}\)
= (2+5-4).\(\sqrt{3}\)
= \(3\sqrt{3}\)
2)\(5\sqrt{5}+\sqrt{20}-3\sqrt{45}\)
= \(5\sqrt{5}+2\sqrt{5}-3.3\sqrt{5}\)
= \(5\sqrt{5}+2\sqrt{5}-9\sqrt{5}\)
= \(\left(5+2-9\right).\sqrt{5}\)
= -2\(\sqrt{2}\)
3)\(3\sqrt{32}+4\sqrt{8}-5\sqrt{18}\)
= \(3.4\sqrt{2}+4.2\sqrt{2}-5.3\sqrt{2}
\)
= 12\(\sqrt{2}\) \(+8\sqrt{2}\) \(-15\sqrt{2}\)
= \(\left(12+8-15\right).\sqrt{2}\)
= \(5\sqrt{2}\)
4)\(3\sqrt{12}-4\sqrt{27}+5\sqrt{48}\)
= \(3.2\sqrt{3}-4.3\sqrt{3}+5.4\sqrt{3}\)
= \(6\sqrt{3}-12\sqrt{3}+20\sqrt{3}\)
= \(\left(6-12+20\right).\sqrt{3}\)
= \(14\sqrt{3}\)
5)\(\sqrt{12}+\sqrt{75}-\sqrt{27}\)
= \(2\sqrt{3}+5\sqrt{3}-3\sqrt{3}\)
= \(\left(2+5-3\right).\sqrt{3}\)
= \(4\sqrt{3}\)
6) \(2\sqrt{18}-7\sqrt{2}+\sqrt{162}\)
= \(2.3\sqrt{2}-7\sqrt{2}+9\sqrt{2}\)
= 6\(\sqrt{2}-7\sqrt{2}+9\sqrt{2}\)
= \(\left(6-7+9\right).\sqrt{2}\)
= 8\(\sqrt{2}\)
7)\(3\sqrt{20}-2\sqrt{45}+4\sqrt{5}\)
= \(3.2\sqrt{5}-2.3\sqrt{5}+4\sqrt{5}\)
= \(6\sqrt{5}-6\sqrt{5}+4\sqrt{5}\)
= \(4\sqrt{5}\)
8)\(\left(\sqrt{2}+2\right).\sqrt{2}-2\sqrt{2}\)
= \(\left(\sqrt{2}\right)^2+2\sqrt{2}-2\sqrt{2}\)
= 2
Xét hiệu :
\(A-B=2\left(\sqrt{1}-\sqrt{2}\right)+2.\left(\sqrt{3}-\sqrt{4}\right)+...+2\left(\sqrt{19}-\sqrt{20}\right)\)
Mà: \(\sqrt{1}<\sqrt{2};\sqrt{3}<\sqrt{4};...;\sqrt{19}<\sqrt{20}\)
nên \(\sqrt{1}-\sqrt{2}<0;\sqrt{3}-\sqrt{4}<0;...;\sqrt{19}-\sqrt{20}<0\)
=> A - B < 0 => A < B