Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) 1024 9 = ( 2 10 ) 9 = 2 90 < 2 100
b) 6 . 5 29 > 5 . 5 29 = 5 30
c) 10 30 = ( 10 3 ) 10 = 1000 10 ; 2 100 = ( 2 10 ) 10 = 1024 10 n ê n 10 30 < 2 100 .
a) Cách 1: 2 100 = 2 10 10 = 1024 10 > 1024 9
Cách 2: 1024 9 = 2 10 9 = 2 90 < 2 100
b) 6 . 5 29 > 5 . 5 29 = 5 30
c) 2 98 = 2 2 49 = 4 49 < 9 49
d) 10 30 = 10 3 10 = 1000 10 ; 2 100 = 2 10 10 = 1024 10 nên 10 30 < 2 100
\(10^{30}=\left(10^3\right)^{10}=1000^{10}\)
\(2^{100}=\left(2^{10}\right)^{10}=1024^{10}\)
mà \(1024^{10}>1000^{10}\)
\(\Rightarrow10^{30}< 2^{100}\)
\(a,16^{19}=\left(2^4\right)^{19}=2^{76}\\ 8^{25}=\left(2^3\right)^{25}=2^{75}\)
Vì \(2^{76}>2^{75}=>16^{19}>8^{25}\)
b,\(3^{500}=\left(3^5\right)^{100}=243^{100}\)
Vì \(243^{100}>5^{100}=>3^{500}>5^{100}\)
a) \(5^{48}=\left(5^4\right)^{12}=625^{12}\)
\(2^{108}=\left(2^9\right)^{12}=512^{12}\)
Do \(625>512\Rightarrow625^{12}>512^{12}\) \(\Rightarrow5^{48}>2^{108}\) (1)
Lại có: \(108>105\Rightarrow2^{108}>2^{105}\) (2)
Từ (1) và (2) \(\Rightarrow5^{48}>2^{105}\)
b) \(2^{50}=\left(2^5\right)^{10}=32^{10}\)
Do \(33>32\Rightarrow33^{10}>32^{10}\)
Vậy \(33^{10}>2^{50}\)
c) Do \(513>512\Rightarrow513^{100}>512^{100}\) (1)
\(512^{100}=\left(2^9\right)^{100}=2^{900}\) \(=2^{10.90}=\left(2^{10}\right)^{90}=1024^{90}\) (2)
Do \(1024>1023\Rightarrow1024^{90}>1023^{90}\) (3)
Từ (1), (2) và (3) \(\Rightarrow513^{100}>1023^{90}\)
a: 99^20=9801^10<9999^10
b: 3^500=243^100
5^300=125^300
=>3^500>5^300
a)
\(\dfrac{-2}{3}\)>\(\dfrac{5}{-8}\)
b)
\(\dfrac{398}{-412}\)<\(\dfrac{-25}{-137}\)
c)
\(\dfrac{-14}{21}\)<\(\dfrac{60}{72}\)
\(a,2^{300}=\left(2^3\right)^{100}=8^{100}\)
\(3^{200}=\left(3^2\right)^{100}=9^{100}\)
Vì \(8^{100}< 9^{100}\) nên \(2^{300}< 3^{200}\)
\(b,8^5=32768\)
\(6^6=46656\)
Vì \(32768< 46656\) nên \(8^5< 6^6\)
\(c,3^{450}=\left(3^3\right)^{150}=27^{150}\)
\(5^{300}=\left(5^2\right)^{150}=25^{150}\)
Vì \(27^{150}>25^{150}\) nên \(3^{450}>5^{300}\)
#Ayumu
a ) 10^30 va 2^100
10^30 = ( 10^3 )^10 = 1000^10 ; 2^100 = ( 2^10 )^10 = 1024^10
Vi 1000 < 1024 nen 1000^10 < 1024^10
=> 10^30 < 2^100
b) 5^10 va 620^10
Vi 5 < 620 nen 5^10 < 620^10
c ) 9^20 va 27^13
9^20 = ( 3^2)^20 = 3^40 ; 27^13 = (3^3)^13 = 3^39
Vi 40 > 39 nen 3^40 > 3^39
=> 9^20 > 27^13