Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
So sánh:
\(A=-\frac{9}{10^{2012}}-\frac{19}{10^{2011}}\) và \(B=-\frac{9}{10^{2011}}-\frac{19}{10^{2012}}\)
Ta có:
\(A=-\frac{9}{10^{2012}}-\frac{19}{10^{2011}}=-\frac{1}{10^{2011}}\left(\frac{9}{10}+19\right)=-\frac{1}{10^{2011}}.\frac{199}{10}\)
\(B=-\frac{9}{10^{2011}}-\frac{19}{10^{2012}}=-\frac{1}{10^{2011}}\left(9+\frac{19}{10}\right)=-\frac{1}{10^{2011}}.\frac{109}{10}\)
Vì \(\frac{199}{10}>\frac{109}{10}\Rightarrow\frac{1}{10^{2011}}.\frac{199}{10}>\frac{1}{10^{2011}}.\frac{109}{10}\Rightarrow-\frac{1}{10^{2011}}.\frac{199}{10}< -\frac{1}{10^{2011}}.\frac{109}{10}\)
Vậy nên A<B
Ta có :
1990^10 + 1990^9 = 1990.1990^9 + 1990^9 = 1991^9 < 1991^10
=> (1990^10 + 1990^9) < 1991^10
Ta có :
\(8^9< 9^9\)
\(7^9< 9^9\)
\(6^9< 9^9\)
\(......\)
\(1^9< 9^9\)
Cộng vế với vế ta được :
\(8^9+7^9+6^9+...+1^9< 9^9+9^9+9^9+...+9^9\) ( có tất cả 8 số \(9^9\) )
\(\Rightarrow8^9+7^9+6^9+...+1^9< 8.9^9< 9.9^9=9^{10}\)
\(\Rightarrow8^9+7^9+6^9+...+1^9< 9^{10}\)
8^9<9^9 ; 7^9<9^9;.......;1^9<9^9
=> 8^9+7^9+6^9+5^9+.....+1^9 < 9^9.8<9^9.9
=> 8^9+7^9+6^9+5^9+.....+1^9<9^10
Vậy : 8^9+7^9+6^9+...+1^9<9^10
dân ta phải biết sử ta
cái gì ko biết thì tra google
9^10 > 10^9
\(^{9^{10}}\)>\(^{10^9}\)