K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 7 2019

So sánh:

\(A=-\frac{9}{10^{2012}}-\frac{19}{10^{2011}}\) và \(B=-\frac{9}{10^{2011}}-\frac{19}{10^{2012}}\)

Ta có: 

\(A=-\frac{9}{10^{2012}}-\frac{19}{10^{2011}}=-\frac{1}{10^{2011}}\left(\frac{9}{10}+19\right)=-\frac{1}{10^{2011}}.\frac{199}{10}\)

\(B=-\frac{9}{10^{2011}}-\frac{19}{10^{2012}}=-\frac{1}{10^{2011}}\left(9+\frac{19}{10}\right)=-\frac{1}{10^{2011}}.\frac{109}{10}\)

Vì \(\frac{199}{10}>\frac{109}{10}\Rightarrow\frac{1}{10^{2011}}.\frac{199}{10}>\frac{1}{10^{2011}}.\frac{109}{10}\Rightarrow-\frac{1}{10^{2011}}.\frac{199}{10}< -\frac{1}{10^{2011}}.\frac{109}{10}\)

Vậy nên A<B

13 tháng 1 2018

\(B< \frac{10^{2012}+1+9}{10^{2013}+1+9}=\frac{10^{2012}+10}{10^{2013}+10}=\frac{10\left(10^{2011}+1\right)}{10\left(10^{2012}+1\right)}=\frac{10^{2011}+1}{10^{2012}+1}=A\)

Vậy A > B

13 tháng 1 2018

Áp dụng bất đẳng thức :

\(\frac{a}{b}< 1\Leftrightarrow\frac{a}{b}< \frac{a+m}{b+m}\)

Ta có :

\(B=\frac{10^{2012}+1}{10^{2013}+1}< \frac{10^{2012}+1+9}{10^{2013}+1+9}=\frac{10^{2012}+10}{10^{2013}+10}=\frac{10\left(10^{2011}+1\right)}{10\left(10^{2012}+1\right)}=\frac{10^{2011}+1}{10^{2012}+1}=A\)

\(\Leftrightarrow B< A\)

23 tháng 3 2018

1/ (69.210+1210)+(219.273+15.49.94)  = 29.39.210+310.220+219.39+5.3.218.38 = 219.39+310.220+219.39+5.218.39

218.39(2+3.22+5)=19.218.39

19 tháng 7 2018

sao bạn lại nhắn vớ va vớ vậy PHẠM ĐỨC PHÚC

18 tháng 3 2019

Ta có: \(A=\frac{-9}{10^{2010}}+\frac{-19}{10^{2011}}=\frac{-9}{10^{2010}}-\frac{9}{10^{2011}}-\frac{10}{10^{2011}}\)

               \(=\frac{-9}{10^{2010}}-\frac{9}{10^{1011}}-\frac{1}{10^{2010}}=\frac{-9}{10^{2011}}+\frac{-10}{10^{2010}}\)

Ta thấy : \(\frac{10}{10^{2010}}< \frac{19}{10^{2010}}\Rightarrow\frac{-10}{10^{2010}}>\frac{-19}{10^{2010}}\)

            \(\Rightarrow\frac{-9}{10^{2011}}+\frac{-10}{10^{2010}}>\frac{-9}{10^{2011}}+\frac{-19}{10^{2010}}\)

Hay \(A>B\)

Vậy ...

26 tháng 2 2020

Theo bài ra ta có :

\(A=\frac{2011}{1.2}+\frac{2011}{3.4}+\frac{2011}{4.5}+...+\frac{2011}{1999.2000}\)

\(\Rightarrow\frac{A}{2011}=\frac{1}{1.2}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{1999.2000}\)

\(\Rightarrow\frac{A}{2011}=\frac{1}{1}-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{1999}-\frac{1}{2000}\)

\(\Rightarrow\frac{A}{2011}=\left(\frac{1}{1}+\frac{1}{3}+...+\frac{1}{1999}\right)+\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{2000}\right)\)

\(\Rightarrow\frac{A}{2011}=\left(\frac{1}{1}+\frac{1}{2}+...+\frac{1}{2000}\right)-\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{2000}\right)\) \(-\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{2000}\right)\)

\(\Rightarrow\frac{A}{2011}=\left(\frac{1}{1}+\frac{1}{2}+...+\frac{1}{2000}\right)-2\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{2000}\right)\) 

\(\Rightarrow\frac{A}{2011}=\left(\frac{1}{1}+\frac{1}{2}+...+\frac{1}{2000}\right)-\left(\frac{1}{1}+\frac{1}{2}+...+\frac{1}{1000}\right)\)

\(\Rightarrow\frac{A}{2011}=\frac{1}{1001}+\frac{1}{1002}+...+\frac{1}{2000}\)

\(\Rightarrow A=2011\left(\frac{1}{1001}+\frac{1}{1002}+...+\frac{1}{2000}\right)\left(1\right)\)

Ta lại có :

\(B=\frac{2012}{1001}+\frac{2012}{1002}+...+\frac{2012}{2000}\)

\(\Rightarrow B=2012\left(\frac{1}{1001}+\frac{1}{1002}+...+\frac{1}{2000}\right)\)\(\left(2\right)\)

Từ (1) và (2) => A < B

Vậy A < B

4 tháng 1 2022

lộn dấu xíu kìa

nhìn chung đúng rồi bạn ơi

 

6 tháng 1 2017

Mk cx chiu