Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1+25+210+...+22015+22020
Gọi: 1+25+210+...+22015+22020 là A
A.25 = 25 + 210 + 215+...+22020+22025
A.25-A= 22025 - 1
A.(25-1) = 22025 -1
A.31= 22025 -1
A= 22025 -1/ 31
\(A=2^{2015}+2^{2016}+2^{2017}+2^{2018}+2^{2019}+2^{2020}.\)
\(=2^{2014}\left(2+2^2+2^3+2^4+2^5+2^6\right)\)
\(=126.2^{2014}\)
\(=42.3.2^{2014}⋮42\)
c) \(M=\frac{2019}{2020}+\frac{2020}{2021}\) và \(N=\frac{2019+2020}{2020+2021}\)
Ta có \(\frac{2019}{2020}>\frac{2019}{2020+2021}\)
\(\frac{2020}{2021}>\frac{2020}{2020+2021}\)
\(\Rightarrow\frac{2019}{2020}+\frac{2020}{2021}< \frac{2019+2020}{2020+2021}=N\)
\(\Rightarrow M>N\)
Ta có:1718>1618
1618=(24)18=272
Do 2^72>2^71 mà 17^18>2^72
Vậy 17^18>2^71
\(B=\frac{2^{2020}+2}{2^{2021}+2}=\frac{2\left(2^{2019}+1\right)}{2\left(2^{2020}+1\right)}=\frac{2^{2019}+1}{2^{2020}+1}\)
vậy A=B=\(\frac{2^{2019}+1}{2^{2020}+1}\)
\(B=\frac{2^{2020}+2}{2^{2021}+2}\)
\(=\frac{2\left(2^{2019}+1\right)}{2\left(2^{2020}+1\right)}\)
\(=\frac{2^{2019}+1}{2^{2020}+1}=A\)
Vậy \(A=B\)
P/s: Bài này mk thường thấy dạng như phía dưới, bn đọc tham khảo
\(B=\frac{2^{2020}+1}{2^{2021}+1}< \frac{2^{2020}+1+1}{2^{2021}+1+1}=\frac{2^{2020}+2}{2^{2021}+2}=\frac{2^{2019}+1}{2^{2020}+1}=A\)
Vậy \(A>B\)