Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
+) \(A=3\left(x-4\right)^4-4\ge-4\)
Min A = -4 \(\Leftrightarrow x-4=0\Leftrightarrow x=4\)
+) \(B=5+2\left(x-2019\right)^{2020}\ge5\)
Min B = 5 \(\Leftrightarrow x-2019=0\Leftrightarrow x=2019\)
+) \(C=5+2018\left(2020-x\right)^2\)
Min C = 5 \(\Leftrightarrow2020-x=0\Leftrightarrow x=2020\)
+) \(D=\left(x-1\right)^{2020}+\left(y+x\right)-1\ge-1\)
Min D = -1 \(\Leftrightarrow\hept{\begin{cases}x-1=0\\y+x=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=1\\y=-x\end{cases}\Leftrightarrow}\hept{\begin{cases}x=1\\y=-1\end{cases}}}\)
+) \(E=2\left(x-1\right)^2+3\left(2x-y\right)^4-2\ge-2\)
Min E = -2 \(\Leftrightarrow\hept{\begin{cases}x-1=0\\2x-y=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=1\\2x=y\end{cases}\Leftrightarrow}\hept{\begin{cases}x=1\\y=2\end{cases}}}\)
Đặt A = \(\frac{2019^{2019}+1}{2019^{2020}+1}\)
=> \(2019A=\frac{2019^{2020}+2019}{2019^{2020}+1}=1+\frac{2018}{2019^{2020}+1}\)
Đặt B = \(\frac{2019^{2020}+1}{2019^{2021}+1}\)
=> \(2019B=\frac{2019^{2021}+2019}{2019^{2021}+1}=1+\frac{2018}{2019^{2021}+1}\)
Vì \(\frac{2018}{2019^{2020}+1}>\frac{2018}{2019^{2021}+1}\Rightarrow1+\frac{2018}{2019^{2020}+1}>1+\frac{2018}{2019^{2021}+1}\Rightarrow10A>10B\Rightarrow A>B\)
c) \(M=\frac{2019}{2020}+\frac{2020}{2021}\) và \(N=\frac{2019+2020}{2020+2021}\)
Ta có \(\frac{2019}{2020}>\frac{2019}{2020+2021}\)
\(\frac{2020}{2021}>\frac{2020}{2020+2021}\)
\(\Rightarrow\frac{2019}{2020}+\frac{2020}{2021}< \frac{2019+2020}{2020+2021}=N\)
\(\Rightarrow M>N\)
BÀI 1 :
a) |-15|+(-27)+8+|-23|
= 15-27+8+23
=19
b) 5\(^8\):5\(^6\)+2\(^2\).3\(^3\)-2020\(^0\)
= 5\(^2\)+4.27-1
=25+108-1
=132
BÀI 2 :
a) 7\(^x\).49=7\(^{50}\)
=> 7\(^x\).7\(^2\)=7\(^{50}\)
=> 7\(^x\)=7\(^{50}\):7\(^2\)=7\(^{48}\)
=> x= 48
vậy x = 48
b) ( 3x - 1 )\(^3\) = 125
=> ( 3x - 1 )\(^3\) = 5\(^3\)
=> 3x - 1 = 5
=> 3x = 6
=> x = 2
Vậy x = 2
c) Câu c bạn viết lại đề bài nhé. Mk giải sau