K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 3 2016

Ta có: 1- 2012/2013=1/2013

1- 2013/2014=1/2014

Mà 1/2013>1/2014

vậy 2012/2013<2013/2014

7 tháng 4 2019

\(M=\frac{2012}{2013}.\frac{2012^{2011}}{2013^{2011}}\)

\(N=\frac{2012}{2013}.\frac{2012^{2011}+1}{2013^{2011}+1}\)

Bạn tự so sánh tiếp nhé!

24 tháng 9 2020

Đặt 20122012 = x ; 20132013 = y

Giả sử M < N 

Ta có : \(\frac{x}{y}< \frac{x+2012}{y+2013}\)

\(\Leftrightarrow x\left(y+2013\right)< y\left(x+2012\right)\)

\(\Leftrightarrow xy+2013x< xy+2012y\)

\(\Leftrightarrow2013x< 2012y\)

\(\Leftrightarrow2013.2012^{2012}< 2012.2013^{2013}\)

\(\Leftrightarrow2012^{2011}< 2013^{2012}\)( Đúng )

=> Điều giả sử trên là đúng

=> M < N

21 tháng 3 2018

Ta có : 

\(\frac{1}{2013}M=\frac{2013^{2012}+2012}{2013^{2012}+2013}=\frac{2013^{2012}+2013}{2013^{2012}+2013}-\frac{1}{2013^{2012}+2013}=1-\frac{1}{2013^{2012}+2013}\)

Lại có : 

\(\frac{1}{2013}N=\frac{2013^{2011}+2012}{2013^{2011}+2013}=\frac{2013^{2011}+2013}{2013^{2011}+2013}-\frac{1}{2013^{2011}+2013}=1-\frac{1}{2013^{2011}+2013}\)

Vì \(\frac{1}{2013^{2012}+2013}< \frac{1}{2013^{2011}+2013}\) nên \(M=1-\frac{1}{2013^{2012}}>N=1-\frac{1}{2013^{2011}+2013}\)

Vậy \(M>N\)

Chúc bạn học tốt ~ 

30 tháng 9 2016

N =\(\frac{2010+2011+2012}{2011+2012+2013}\)

\(\Rightarrow N=\frac{2010}{2011+2012+2013}+\frac{2011}{2011+2012+2013}+\frac{2012}{2011+2012+2013}\)

Do: \(\frac{2010}{2011}>\frac{2010}{2011+2012+2013};\frac{2011}{2012}>\frac{2011}{2011+2012+2013};\frac{2012}{2013}>\frac{2012}{2011+2012+2013}\)

\(\Rightarrow\frac{2010}{2011}+\frac{2011}{2012}+\frac{2012}{2013}>\frac{2010}{2011+2012+2013}+\frac{2011}{2011+2012+2013}+\frac{2012}{2011+2012+2013}\)

\(\Rightarrow\frac{2010}{2011}+\frac{2011}{2012}+\frac{2012}{2013}>\frac{2010+2011+2012}{2011+2012+2013}\Leftrightarrow N>M\)

28 tháng 9 2017

Bài :1

\(Q=\frac{2010+2011+2012}{2011+2012+2013}\)

\(Q=\frac{2010}{2011+2012+2013}+\frac{2011}{2011+2012+2013}+\frac{2012}{2011+2012+2013}\)

\(\Rightarrow\frac{2010}{2011}>\frac{2010}{2011+2012+2013}\)

\(\frac{2011}{2012}>\frac{2011}{2011+2012+2013}\)

\(\frac{2012}{2013}>\frac{2012}{2011+2012+2013}\)

\(\Rightarrow P>Q\)

28 tháng 9 2017

cậu thích conan à

20 tháng 7 2018

\(\frac{2014}{2013}+\frac{2013}{2012}+\frac{2012}{2011}+\frac{2011}{2014}\)

\(=1+\frac{1}{2013}+1+\frac{1}{2012}+1+\frac{1}{2011}+1-\frac{3}{2014}\)

\(=4+\left(\frac{1}{2013}+\frac{1}{2012}+\frac{1}{2011}-\frac{1}{2014}-\frac{1}{2014}-\frac{1}{2014}\right)\)

Ta có:

 \(\frac{1}{2011}>\frac{1}{2014}\Rightarrow\frac{1}{2011}-\frac{1}{2014}>0\)

\(\frac{1}{2012}>\frac{1}{2014}\Rightarrow\frac{1}{2012}-\frac{1}{2014}>0\)

\(\frac{1}{2013}>\frac{1}{2014}\Rightarrow\frac{1}{2013}-\frac{1}{2014}>0\)

\(\Rightarrow\frac{1}{2011}-\frac{1}{2014}+\frac{1}{2012}-\frac{1}{2014}+\frac{1}{2013}-\frac{1}{2014}>0\)

\(\Rightarrow4+\left(\frac{1}{2013}+\frac{1}{2012}+\frac{1}{2011}-\frac{1}{2014}-\frac{1}{2014}-\frac{1}{2014}\right)>4\)( thêm 2 vế với 4 )

\(\Rightarrow\frac{2014}{2013}+\frac{2013}{2012}+\frac{2012}{2011}+\frac{2011}{2014}>4\)

Vậy \(\frac{2014}{2013}+\frac{2013}{2012}+\frac{2012}{2011}+\frac{2011}{2014}>4\) 

Tham khảo nhé~

20 tháng 7 2018

Mỗi số hạng của tổng đều nhỏ hơn 1 => Tổng đó nhỏ hơn 4