K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 1 2020

\(a,x=\sqrt{27}-\sqrt{2}\)\(=3\sqrt{3}-\sqrt{2}>3\sqrt{3}-\sqrt{3}=2\sqrt{3}\)

Mà: \(y=\sqrt{3}< 2\sqrt{3}\)

\(\Rightarrow x>y\)

\(b,x=\sqrt{5\sqrt{6}}\Rightarrow x^4=5^2.6=150\)

\(y=\sqrt{6\sqrt{5}}\Rightarrow y^4=6^2.5=180\)

\(\Rightarrow x^4< y^4\Rightarrow x< y\left(x,y>0\right)\)

\(c,x=2m;y=m+2\)

Ta có: \(x-y=2m-\left(m+2\right)=m-2\)

Ta xét các trường hợp:

  • Nếu \(m< 2\Rightarrow m-2< 0\Rightarrow x< y\)
  • Nếu \(m=2\Rightarrow m-2=0\Rightarrow x=y\)
  • Nếu \(m>2\Rightarrow m-2=0\Rightarrow x>y\)
16 tháng 9 2021

\(a,\) Sửa đề: \(\sqrt{3x^2-12x+16}+\sqrt{y^2-4y+13}=5\)

Ta thấy \(3x^2-12x+16=3\left(x-2\right)^2+4\ge4\Leftrightarrow\sqrt{3x^2-12x+16}\ge\sqrt{4}=2\)

\(y^2-4y+13=\left(y-2\right)^2+9\ge9\Leftrightarrow\sqrt{y^2-4y+13}\ge\sqrt{9}=3\)

Cộng vế theo vế 2 BĐT trên:

\(\sqrt{3x^2-12x+16}+\sqrt{y^2-4y+13}\ge2+3=5\)

Dấu \("="\Leftrightarrow x=y=2\)

Vậy pt có nghiệm \(\left(x;y\right)=\left(2;2\right)\)

 

16 tháng 9 2021

\(b,x+y+z+4=2\sqrt{x-2}+4\sqrt{y-3}+6\sqrt{z-5}\\ \Leftrightarrow x+y+z+4-2\sqrt{x-2}-4\sqrt{y-3}-6\sqrt{z-5}=0\\ \Leftrightarrow\left(x-2-2\sqrt{x-2}+1\right)+\left(y-3-4\sqrt{y-3}+4\right)+\left(z-5+6\sqrt{z-5}+9\right)=0\\ \Leftrightarrow\left(\sqrt{x-2}-1\right)^2+\left(\sqrt{y-3}-2\right)^2+\left(\sqrt{z-5}-3\right)^2=0\\ \Leftrightarrow\left\{{}\begin{matrix}\sqrt{x-2}-1=0\\\sqrt{y-3}-2=0\\\sqrt{z-5}-3=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x-2=1\\y-3=4\\z-5=9\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=3\\y=7\\z=14\end{matrix}\right.\)

1. Giải phương trình:1/ \(\sqrt{x-4}+\sqrt{6-x}=x^2-10x+27\)2/ \(\sqrt{x^2-6x+9}+\sqrt{x^2-10x+25}=8\)3/ \(y^2-2y+3=\dfrac{6}{x^2+2x+4}\)4/ \(x^2-x-4=2\sqrt{x-1}\left(1-x\right)\)5/ \(x^2-\left(m+1\right)x+2m-6=0\)6/ \(615+x^2=2^y\)2.a, Cho các số dương a,b thoả mãn \(a+b=2ab\).Tính GTLN của biểu thức \(Q=\dfrac{2}{\sqrt{a^2+b^2}}\).b, Cho các số thực x,y thoả mãn \(x-\sqrt{y+6}=\sqrt{x+6}-y\).Tính GTNN và GTLN của biểu thức \(P=x+y\).3. Cho hàm...
Đọc tiếp

1. Giải phương trình:

1/ \(\sqrt{x-4}+\sqrt{6-x}=x^2-10x+27\)

2/ \(\sqrt{x^2-6x+9}+\sqrt{x^2-10x+25}=8\)

3/ \(y^2-2y+3=\dfrac{6}{x^2+2x+4}\)

4/ \(x^2-x-4=2\sqrt{x-1}\left(1-x\right)\)

5/ \(x^2-\left(m+1\right)x+2m-6=0\)

6/ \(615+x^2=2^y\)

2.

a, Cho các số dương a,b thoả mãn \(a+b=2ab\).

Tính GTLN của biểu thức \(Q=\dfrac{2}{\sqrt{a^2+b^2}}\).

b, Cho các số thực x,y thoả mãn \(x-\sqrt{y+6}=\sqrt{x+6}-y\).

Tính GTNN và GTLN của biểu thức \(P=x+y\).

3. Cho hàm số \(y=\left(m+3\right)x+2m-10\) có đồ thị đường thẳng (d), hàm số \(y=\left(m-4\right)x-2m-8\) có đồ thị đường thẳng (d2) (m là tham số, \(m\ne-3\) và \(m\ne4\)). Trên mặt phẳng toạ độ Oxy, (d) cắt trục hoành tại điểm A, (d2) cắt trục hoành tại điểm B, (d) cắt (d2) tại điểm C nằm trên trục tung. Chứng minh hệ thức \(\dfrac{OA}{BC}=\dfrac{OB}{AC}\).

4. Cho 2 đường tròn (O) và (I) cắt nhau tại dây AB, chứng minh rằng \(\Delta OAI=\Delta OBI\).

0

a).  \(\frac{1}{\sqrt{5-\sqrt{7}}}+\frac{\sqrt{5}}{\sqrt{5+\sqrt{7}}})-1\)

\(\Leftrightarrow\frac{1}{\sqrt{25-\sqrt{49}}}-1\)

\(\Leftrightarrow\frac{1}{\sqrt{25-7}}-1\)

\(\Leftrightarrow\frac{1}{\sqrt{18}}-1\)

\(\Leftrightarrow\frac{1}{3\sqrt{2}}-1\) 

ĐẾN ĐÂY BN QUY ĐỒNG LÀ ĐC

a)\(\sqrt{\frac{3a}{7}}-2\sqrt{\frac{7a}{3}}+\sqrt{21a}\)  =\(\sqrt{\frac{3}{7}.\frac{1}{21}.21a}\)  -  \(2\sqrt{\frac{7}{3}.\frac{1}{21}.21a}\)+  \(\sqrt{21}\)

=\(\sqrt{\frac{1}{49}.21a}\) -  \(2\sqrt{\frac{1}{9}.21a}\)+\(\sqrt{21}\)

=\(\sqrt{\frac{1}{49}}.\sqrt{21a}\)  -   \(2.\sqrt{\frac{1}{9}}.\sqrt{21a}\)+  \(\sqrt{21a}\)

=\(\frac{1}{7}\sqrt{21a}\) - \(\frac{2}{3}\sqrt{21a}\)  +  \(\sqrt{21a}\)

=\(\frac{-10}{21}\sqrt{21a}\)

b)

N=\(\sqrt{\frac{8x}{3}}\) - \(\sqrt{\frac{27x}{2}}\) + \(\sqrt{6x}\)

=\(\sqrt{\frac{8}{3}.\frac{1}{6}.6x}\) - \(\sqrt{\frac{27}{2}.\frac{1}{6}.6x}\)\(\sqrt{6x}\)

=\(\frac{2}{3}\sqrt{6x}-\frac{3}{2}.\sqrt{6x}+\sqrt{6x}\)

=\(\frac{1}{6}\sqrt{6x}\)

em lớp 8 nene làm theo cách hiểu thôi ạ

22 tháng 12 2022

`[\sqrt{27}-\sqrt{15}]/[3-\sqrt{5}]+4/[2+\sqrt{3}]-6/\sqrt{3}`

`=[\sqrt{3}(3-\sqrt{5})]/[3-\sqrt{5}]+[4(2-\sqrt{3})]/[4-3]-[2\sqrt{3}.\sqrt{3}]/\sqrt{3}`

`=\sqrt{3}+8-4\sqrt{3}-2\sqrt{3}`

`=8-5\sqrt{3}`

_______________________________________

`[x-y]/[\sqrt{x}+\sqrt{y}]-[x\sqrt{y}+y\sqrt{x}]/\sqrt{xy}`    `ĐK:  x,y > 0`

`=[(\sqrt{x}-\sqrt{y})(\sqrt{x}+\sqrt{y})]/[\sqrt{x}+\sqrt{y}]-[\sqrt{xy}(\sqrt{x}+\sqrt{y})]/\sqrt{xy}`

`=\sqrt{x}-\sqrt{y}-\sqrt{x}-\sqrt{y}`

`=-2\sqrt{y}`