Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta thấy \(\frac{10^8+2}{10^8-1}=\frac{10^8-1+3}{10^8-1}=1+\frac{3}{10^8-1}\)
\(\frac{10^8}{10^8-3}=\frac{10^8-3+3}{10^8-3}=1+\frac{3}{10^8-3}\)
Vậy là em so sánh được rồi nhé :)
\(A=\frac{10^8+2}{10^8-1}=\frac{10^8-1+3}{10^8-1}=1+\frac{3}{10^8-1}\)
\(B=\frac{10^8}{10^8-3}=\frac{10^8-3+3}{10^8-3}=1+\frac{3}{10^8-3}\)
Vì \(\frac{3}{10^8-1}
Đề hình như sai rùi bn, ở A mẫu phải là 108 - 1 chứ
Áp dụng a/b < 1 => a/b < a+m/b+m (a;b;m thuộc N*)
Ta có:
\(B=\frac{10^8}{10^8-3}< \frac{10^8+2}{10^8-3+2}=\frac{10^8+2}{10^8-1}=A\)
=> B < A
trừ A cho 3/(108-1) (1) = 1
trừ B cho 3/(108-3) (2) = 1
dễ thấy (1)>(2) suy ra A>B
\(M=\frac{10^7+5}{10^7-8}=\frac{10^7-8+13}{10^7-8}=1+\frac{13}{10^7-8}\)
\(N=\frac{10^8+6}{10^8-7}=\frac{10^8-7+13}{10^8-7}=1+\frac{13}{10^8-7}\)
Ta có \(10^8-7>10^7-8\) \(=>\frac{13}{10^8-7}< \frac{13}{10^7-8}\) \(=>M< N\)
Vậy M<N
M=\(\frac{10^8-1+3}{10^8-1}\)=1+\(\frac{3}{10^8-1}\)
N=\(\frac{10^8-3+3}{10^8-3}\)=1+\(\frac{3}{10^8-3}\)
Ta có:\(\frac{3}{10^8-1}\)<\(\frac{3}{10^8-3}\) NÊN M<N
M=N(1,00000003)