Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đề hình như sai rùi bn, ở A mẫu phải là 108 - 1 chứ
Áp dụng a/b < 1 => a/b < a+m/b+m (a;b;m thuộc N*)
Ta có:
\(B=\frac{10^8}{10^8-3}< \frac{10^8+2}{10^8-3+2}=\frac{10^8+2}{10^8-1}=A\)
=> B < A
trừ A cho 3/(108-1) (1) = 1
trừ B cho 3/(108-3) (2) = 1
dễ thấy (1)>(2) suy ra A>B
Ta có :
\(A=\frac{10^8+2}{10^8-1}=\frac{10^8-1+3}{10^8-1}=1+\frac{3}{10^8-1}\)
\(B=\frac{10^8}{10^8-3}=\frac{10^8-3+3}{10^8-3}=1+\frac{3}{10^8-3}\)
Do \(\frac{3}{10^8-1}>\frac{3}{10^8-3}\)
\(\Rightarrow1+\frac{3}{10^8-1}>1+\frac{3}{10^8-3}\)
\(\Rightarrow\frac{10^8+2}{10^8-1}>\frac{10^8}{10^8-3}\)
\(\Rightarrow A>B\)
Chúc bạn học tốt !!!
Vì B > 1 => \(\frac{10^8}{10^8-3}\)>\(\frac{10^8+2}{10^8-3+2}\)= \(\frac{10^8+2}{10^8-1}=A\)
Vậy B>A
Ta có : \(A=\frac{10^8+2}{10^8-1}=\frac{10^8-1+3}{10^8-1}=1+\frac{3}{10^8-1}\); \(B=\frac{10^8}{10^8-3}=\frac{10^8-3+3}{10^8-3}=1+\frac{3}{10^8-3}\)
Mà \(\frac{3}{10^8-1}>\frac{3}{10^8-3}\Rightarrow A>B\)
\(A=\frac{10^8+2}{10^8-1}=\frac{10^8-1+3}{10^8-1}=1+\frac{3}{10^8-1}\)
\(B=\frac{10^8}{10^8-3}=\frac{10^8-3+3}{10^8-3}=1+\frac{3}{10^8-3}\)
Vì \(\frac{3}{10^8-1}
\(\frac{10^8+2}{10^8-1}=1+\frac{3}{10^8-1}