Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có :
\(\frac{1}{2^2}=\frac{1}{2.2}<\frac{1}{1.2}\)
\(\frac{1}{3^2}=\frac{1}{3.3}<\frac{1}{2.3}\)
....
\(\frac{1}{n^2}=\frac{1}{n.n}<\frac{1}{\left(n-1\right).n}\)
\(\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{n^2}<\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{\left(n-1\right).n}\)
Mà \(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{\left(n-1\right).n}<1\)nên \(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{100^2}<1\)
Đặt A = \(\frac{n+1}{n+2}\)
=> \(\frac{1}{A}=\frac{n+2}{n+1}\)
=> \(\frac{1}{A}-1=\frac{n+2-n-1}{n+1}=\frac{1}{n+1}\)
Đặt B = \(\frac{n+3}{n+4}\)
=> \(\frac{1}{B}=\frac{n+4}{n+3}\)
=> \(\frac{1}{B}-1=\frac{n+4-n-3}{n+3}=\frac{1}{n+3}\)
Vì \(\frac{1}{n+1}>\frac{1}{n+3}\Rightarrow\frac{1}{A}-1>\frac{1}{B}-1\Rightarrow\frac{1}{A}>\frac{1}{B}\Rightarrow A< B\)
Vậy \(\frac{n+1}{n+2}< \frac{n+3}{n+4}\)
Đặt \(A=\frac{n+1}{n+2}\)
\(\Rightarrow\frac{1}{A}=\frac{n+2}{n+1}\)
\(\Rightarrow\frac{1}{A}-1=\frac{n+2-n+1}{n+1}=\frac{1}{n+1}\)
Đặt \(B=\frac{n+3}{n+4}\)
\(\Rightarrow\frac{1}{B}=\frac{n+4}{n+3}\)
\(\Rightarrow\frac{1}{B}-1=\frac{n+4-n-3}{n+3}=\frac{1}{n+3}\)
Vì \(\frac{1}{n+1}>\frac{1}{n+3}\Rightarrow\frac{1}{A}-1>\frac{1}{B}-1\Rightarrow\frac{1}{A}>\frac{1}{B}\Rightarrow A< B\)
Vậy \(\frac{n+1}{n+2}< \frac{n+3}{n+4}\)
n/n+3=n:(n+3)=n:n+n:3=1+n:3
n+1/n+2=(n+1):(n+2)=(n+1):n+(n+1):(n+2)=1+n+n/2+1/2=3/2+3n/2=3(1+n):2
Vì ta thấy rõ 3(1+n):2 > 1+n :3
Hay n/n+3 < n+1/n+2
Ta xét 2 phân số sau thì có :
\(\frac{n}{n+3}=\frac{n+3-3}{n+3}=\frac{n+3}{n+3}-\frac{3}{n+3}=1-\frac{3}{n+3}\)
\(\frac{n+1}{n+2}=\frac{n+2-1}{n+2}=\frac{n+2}{n+2}-\frac{1}{n+2}=1-\frac{1}{n+2}\)
Để so sánh 2 phân số trên ta so sánh\(\frac{3}{n+3};\frac{1}{n+2}\)
Quy đồng lên ta có :
\(\frac{3}{n+3}=\frac{3\left(n+2\right)}{\left(n+3\right)\left(n+2\right)}=\frac{3n+6}{\left(n+3\right)\left(n+2\right)}\)
\(\frac{1}{n+2}=\frac{n+3}{\left(n+2\right)\left(n+3\right)}\)
Mà 3n+6>n+3
\(\Rightarrow\frac{3}{n+3}>\frac{1}{n+2}\)
\(\Rightarrow1-\frac{3}{n+3}< 1-\frac{1}{n+2}\)
\(\Rightarrow\frac{n}{n+3}< \frac{n+1}{n+2}\)
\(\frac{2n+1}{n+3}=\frac{n+n+1}{n+3}=\frac{n}{n+3}+\frac{n+1}{n+3}\)
Do: \(\frac{n}{n+3}< \frac{n}{n+1};\frac{n+1}{n+3}< \frac{n+1}{n+2}\Rightarrow\frac{n}{n+3}+\frac{n+1}{n+3}< \frac{n}{n+1}+\frac{n+1}{n+2}\Rightarrow\frac{2n+1}{n+3}< \frac{n}{n+1}+\frac{n+1}{n+2}\)