Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có :
\(\frac{1}{2^2}< \frac{1}{1.2}\)
\(\frac{1}{3^2}< \frac{1}{2.3}\)
\(\frac{1}{4^2}< \frac{1}{3.4}\)
\(............\)
\(\frac{1}{n^2}< \frac{1}{\left(n-1\right)n}\)
\(\Rightarrow\)\(A=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{n^2}< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{\left(n-1\right)n}\)
\(\Rightarrow\)\(A< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{\left(n-1\right)n}\)
\(\Rightarrow\)\(A< \frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{n-1}-\frac{1}{n}\)
\(\Rightarrow\)\(A< 1-\frac{1}{n}< 1\)
Vậy \(A< 1\)
Chúc bạn học tốt ~
\(\frac{2n+1}{n+3}=\frac{n+n+1}{n+3}=\frac{n}{n+3}+\frac{n+1}{n+3}\)
Do: \(\frac{n}{n+3}< \frac{n}{n+1};\frac{n+1}{n+3}< \frac{n+1}{n+2}\Rightarrow\frac{n}{n+3}+\frac{n+1}{n+3}< \frac{n}{n+1}+\frac{n+1}{n+2}\Rightarrow\frac{2n+1}{n+3}< \frac{n}{n+1}+\frac{n+1}{n+2}\)
n/n+3=n:(n+3)=n:n+n:3=1+n:3
n+1/n+2=(n+1):(n+2)=(n+1):n+(n+1):(n+2)=1+n+n/2+1/2=3/2+3n/2=3(1+n):2
Vì ta thấy rõ 3(1+n):2 > 1+n :3
Hay n/n+3 < n+1/n+2
Ta xét 2 phân số sau thì có :
\(\frac{n}{n+3}=\frac{n+3-3}{n+3}=\frac{n+3}{n+3}-\frac{3}{n+3}=1-\frac{3}{n+3}\)
\(\frac{n+1}{n+2}=\frac{n+2-1}{n+2}=\frac{n+2}{n+2}-\frac{1}{n+2}=1-\frac{1}{n+2}\)
Để so sánh 2 phân số trên ta so sánh\(\frac{3}{n+3};\frac{1}{n+2}\)
Quy đồng lên ta có :
\(\frac{3}{n+3}=\frac{3\left(n+2\right)}{\left(n+3\right)\left(n+2\right)}=\frac{3n+6}{\left(n+3\right)\left(n+2\right)}\)
\(\frac{1}{n+2}=\frac{n+3}{\left(n+2\right)\left(n+3\right)}\)
Mà 3n+6>n+3
\(\Rightarrow\frac{3}{n+3}>\frac{1}{n+2}\)
\(\Rightarrow1-\frac{3}{n+3}< 1-\frac{1}{n+2}\)
\(\Rightarrow\frac{n}{n+3}< \frac{n+1}{n+2}\)
\(P=\frac{3}{1!\left(1+2\right)+3!}+\frac{4}{2!\left(1+3\right)+4!}+...+\frac{2017}{2015!\left(1+2016\right)+2017!}\)
\(P=\frac{3}{3\left(1!+2!\right)}+\frac{4}{4\left(2!+3!\right)}+...+\frac{2017}{2017\left(2015!+2016!\right)}\)
\(P=\frac{1}{1!+2!}+\frac{1}{2!+3!}+...+\frac{1}{2015!+2016!}\)
Ta có \(a!>\sqrt{a}\)\(\left(a\inℕ;a>1\right)\) do đó :
\(P>\frac{1}{\sqrt{1}+\sqrt{2}}+\frac{1}{\sqrt{2}+\sqrt{3}}+...+\frac{1}{\sqrt{2015}+\sqrt{2016}}\)
\(=\frac{\sqrt{2}-1}{\left(\sqrt{2}+1\right)\left(\sqrt{2}-1\right)}+\frac{\sqrt{3}-\sqrt{2}}{\left(\sqrt{3}+\sqrt{2}\right)\left(\sqrt{3}-\sqrt{2}\right)}+...+\)
\(\frac{\sqrt{2016}-\sqrt{2015}}{\left(\sqrt{2016}+\sqrt{2015}\right)\left(\sqrt{2016}-\sqrt{2015}\right)}=\sqrt{2}-1+\sqrt{3}-\sqrt{2}+...+\sqrt{2016}\)
\(-\sqrt{2015}=\sqrt{2016}-1=\frac{1}{2}+\left(\sqrt{2016}-\frac{3}{2}\right)=\frac{1}{2}+\left(\sqrt{2016}-\sqrt{\frac{9}{4}}\right)>\frac{1}{2}\)
Vậy \(P>\frac{1}{2}\)
Chúc bạn học tốt ~
PS : tự nghĩ bừa thui nhé :))
Đặt \(B=\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{\left(n-1\right)\cdot n}\)
Ta có:
\(A=\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{n^2}\)\(< \)\(B=\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{\left(n-1\right)\cdot n}\left(1\right)\)
Mà \(B=\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{\left(n-1\right)\cdot n}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{n-1}-\frac{1}{n}\)
\(=1-\frac{1}{n}< 1\left(2\right)\)(đúng. vì \(n\ge2\))
Từ (1) và (2) \(\Rightarrow A< B< 1\Rightarrow A< 1\)
M = \(\left(1-\frac{1}{2^2}\right)\left(1-\frac{1}{3^2}\right)\left(1-\frac{1}{4^2}\right).....\left(1-\frac{1}{2015^2}\right)\)
M = \(\left(-\frac{1.3}{2.2}\right)\left(-\frac{2.4}{3.3}\right)\left(-\frac{3.5}{4.4}\right)....\left(-\frac{2014.2016}{2015.2015}\right)\)
M = \(\frac{\left(1.2.3....2014\right)\left(3.4.5...2016\right)}{\left(2.3.4.....2015\right)\left(2.3.4....2015\right)}\)
M = \(\frac{2016}{2015.2}\)
M = \(\frac{1008}{2015}\)
N = \(\frac{1}{2}\)=\(\frac{1008}{2016}\)
Vì \(\frac{1008}{2015}>\frac{1008}{2016}\)
=> M > N
Đặt A = \(\frac{n+1}{n+2}\)
=> \(\frac{1}{A}=\frac{n+2}{n+1}\)
=> \(\frac{1}{A}-1=\frac{n+2-n-1}{n+1}=\frac{1}{n+1}\)
Đặt B = \(\frac{n+3}{n+4}\)
=> \(\frac{1}{B}=\frac{n+4}{n+3}\)
=> \(\frac{1}{B}-1=\frac{n+4-n-3}{n+3}=\frac{1}{n+3}\)
Vì \(\frac{1}{n+1}>\frac{1}{n+3}\Rightarrow\frac{1}{A}-1>\frac{1}{B}-1\Rightarrow\frac{1}{A}>\frac{1}{B}\Rightarrow A< B\)
Vậy \(\frac{n+1}{n+2}< \frac{n+3}{n+4}\)
Đặt \(A=\frac{n+1}{n+2}\)
\(\Rightarrow\frac{1}{A}=\frac{n+2}{n+1}\)
\(\Rightarrow\frac{1}{A}-1=\frac{n+2-n+1}{n+1}=\frac{1}{n+1}\)
Đặt \(B=\frac{n+3}{n+4}\)
\(\Rightarrow\frac{1}{B}=\frac{n+4}{n+3}\)
\(\Rightarrow\frac{1}{B}-1=\frac{n+4-n-3}{n+3}=\frac{1}{n+3}\)
Vì \(\frac{1}{n+1}>\frac{1}{n+3}\Rightarrow\frac{1}{A}-1>\frac{1}{B}-1\Rightarrow\frac{1}{A}>\frac{1}{B}\Rightarrow A< B\)
Vậy \(\frac{n+1}{n+2}< \frac{n+3}{n+4}\)