Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\sqrt[]{50}+\sqrt[]{65}\Rightarrow A^2=50+65+2\sqrt[]{50.65}=115+2\sqrt[]{5.10.5.13=}115+10\sqrt[]{130}\left(1\right)\)
\(B=\sqrt[]{15}+\sqrt[]{115}\Rightarrow B^2=15+115+2\sqrt[]{15.115}=15+115+2\sqrt[]{3.5.5.23}=15+115+10\sqrt[]{69}\left(2\right)\)Ta có \(10\sqrt[]{130}< 10\sqrt[]{69.2}=10\sqrt[]{2}\sqrt[]{69}< 15+10\sqrt[]{69}\left(3\right)\)
\(\left(1\right),\left(2\right),\left(3\right)\Rightarrow A^2< B^2\Rightarrow A< B\)
\(\Rightarrow\sqrt[]{50}+\sqrt[]{65}< \sqrt[]{15}+\sqrt[]{115}\)
So sánh gì thế em, em nhập đủ đề vào hi
Đặt \(A=\frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{2015}}\)
Ta thấy: \(\frac{1}{\sqrt{1}}>\frac{1}{\sqrt{2015}}\)
\(\frac{1}{\sqrt{2}}>\frac{1}{\sqrt{2015}}\)
\(\frac{1}{\sqrt{3}}>\frac{1}{\sqrt{2015}}\)
.........................
\(\frac{1}{\sqrt{2014}}>\frac{1}{\sqrt{2015}}\)
=>\(\frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{2014}}>\frac{1}{\sqrt{2015}}+\frac{1}{\sqrt{2015}}+\frac{1}{\sqrt{2015}}+...+\frac{1}{\sqrt{2015}}\)
=>\(\frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{2014}}+\frac{1}{\sqrt{2015}}>\frac{1}{\sqrt{2015}}+\frac{1}{\sqrt{2015}}+\frac{1}{\sqrt{2015}}+...+\frac{1}{\sqrt{2015}}+\frac{1}{\sqrt{2015}}\)
=>\(A>2015.\frac{1}{\sqrt{2015}}=\frac{2015}{\sqrt{2015}}=\sqrt{2015}\)
Vậy \(\frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{2015}}>\sqrt{2015}\)
\(0,5\sqrt{100}-\sqrt{\frac{4}{25}}=0,5.10-\frac{\sqrt{4}}{\sqrt{25}}=5-\frac{2}{5}=\frac{23}{5}=\frac{138}{30}\)
\(\left(\sqrt{1\frac{1}{9}-\sqrt{\frac{9}{16}}}\right):5=\left(\sqrt{\frac{10}{9}-\frac{3}{4}}\right):5=\sqrt{\frac{13}{36}}:5=\frac{\sqrt{13}}{6}:5=\frac{\sqrt{13}}{30}\)
Vì 13 < 138 nên \(\sqrt{13}< 138\Rightarrow\frac{\sqrt{13}}{30}< \frac{138}{30}\)
Vậy \(0,5\sqrt{100}-\sqrt{\frac{4}{25}}>\left(\sqrt{1\frac{1}{9}-\sqrt{\frac{9}{16}}}\right):5\).
Ta có:
\(\frac{46-3\sqrt{39}}{4}< \frac{46-3\sqrt{36}}{4}=\frac{46-18}{4}=7=\sqrt{49}< \sqrt{50}.\)