Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt :
\(A=\frac{2^{2014}+1}{2^{2014}}=\frac{2^{2014}}{2^{2014}}+\frac{1}{2^{2014}}=1+\frac{1}{2^{2014}}\)
\(B=\frac{2^{2014}+2}{2^{2014}+1}=\frac{2^{2014}+1+1}{2^{2014}+1}=\frac{2^{2014}+1}{2^{2014}+1}\)\(=1+\frac{1}{2^{2014}+1}\)
\(1+\frac{1}{2^{2014}}>1+\frac{1}{2^{2014}+2}\Leftrightarrow A>B\)
Ta có : A = \(\frac{2^{2014}+1}{2^{2014}}=1+\frac{1}{2^{2014}}\)
B = \(\frac{2^{2014}+2}{2^{2014}+1}=1+\frac{1}{2^{2014}+1}\)
Vì : \(\frac{1}{2^{2014}}>\frac{1}{2^{2014}+1}\)
Nên A > B
Gợi ý nhé: bạn hãy so sánh 2014A và 2014B rồi suy ngược lại A và B
Ta có:
2014A=20142014+ 2014/20142014+1=1+2013/20142014+1
2014B=20142013+2014/20142013+1=1+2013/20142013+1
vì 1+2013/20142014+1<1+2013/20142013+1 nên 10A < 10B
suy ra A<B
\(\frac{2^{2014}+1}{2^{2014}}=\frac{2^{2014}}{2^{2014}}+\frac{1}{2^{2014}}=1+\frac{1}{2^{2014}}\)
\(\frac{2^{2014}+2}{2^{2014}+1}=\frac{2^{2014}+1+1}{2^{2014}+1}=\frac{2^{2014}+1}{2^{2014}+1}+\frac{1}{2^{2014}+1}=1+\frac{1}{2^{2014}+1}\)
so sánh \(\frac{1}{2^{2014}}\) và \(\frac{1}{2^{2014}+1}\)
ta có
\(2^{2014}<2^{2014}+1\)
nên \(\frac{1}{2^{2014}}>\frac{1}{2^{2014}+1}=>1+\frac{1}{2014}>1+\frac{1}{2014+1}=>\frac{2^{2014}+1}{2^{2014}}>\frac{2^{2014}+2}{2^{2014}+1}\)
B = 201410+2/201411+2 < 201411+2+4026 / 201412+2+4026
= 201411+4028/201412+4028
= 2014(201410+2)/2014(201411+2)
= 201410+2/201411+2 = A
=> A > B
A = (n + 2015)(n + 2016) + n2 + n
= (n + 2015)(n + 2015 + 1) + n(n + 1)
Tích 2 số tự nhiên liên tiếp luôn chia hết cho 2
=> (n + 2015)(n + 2015 + 1) chia hết cho 2
n(n + 1) chia hết cho 2
=> (n + 2015)(n + 2015 + 1) + n(n + 1) chia hết cho 2
=> A chia hết cho 2 với mọi n \(\in\) N (đpcm)
\(A=\frac{2^{2014}+1}{2^{2014}}=\frac{2^{2014}}{2^{2014}}+\frac{1}{2^{2014}}=1+\frac{1}{2^{2014}}\)
\(B=\frac{2^{2014}+2}{2^{2014}+1}=\frac{2^{2014}+1+1}{2^{2014}+1}=\frac{2^{2014}+1}{2^{2014}+1}+\frac{1}{2^{2014}+1}=1+\frac{1}{2^{2014}+1}\)
Ta có: \(\frac{1}{2^{2014}}>\frac{1}{2^{2014}+1}\)
\(\Rightarrow1+\frac{1}{2^{2014}}>1+\frac{1}{2^{2014}+1}\)
\(\Rightarrow\frac{2^{2014}+1}{2^{2014}}>\frac{2^{2014}+2}{2^{2014}+1}\)
\(\Rightarrow A>B\)
Tham khảo nhé ~
ta thấy:
2^2014<2^2014+2
=>\(\frac{2^{2014}+1}{2^{2014}}>\frac{2^{2014}+1}{2^{2014}+2}\)
vậy......
Có : 22014 + 1 > 22014 nên \(\frac{2^{2014}+1}{2^{2014}}\)> 1 .
22104 + 1 < 22014 + 2 nên \(\frac{2^{2014}+1}{2^{2014}+2}\)< 1.
=> \(\frac{2^{2014}+1}{2^{2014}}\)>\(\frac{2^{2014}+1}{2^{2014}+2}\)