Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
So sánh A và B
\(A=\frac{2018^{2017}+14}{2018^{2016}+14}\)
\(B=\frac{2018^{2016}+14}{2018^{2015}+14}\)
E =\(\frac{2018^{99}-1}{2018^{100}-1}\)so sánh với F =\(\frac{2018^{98}-1}{2018^{99}-1}\)
Ai nhanh tk
Ta có \(E=\frac{2018^{99}-1}{2018^{100}-1}\)
\(\Leftrightarrow2018E=\frac{2018^{100}-2018}{2018^{100}-1}\)
\(\Leftrightarrow2018E=1-\frac{2017}{2018^{100}-1}\) (2)
Lại có \(F=\frac{2018^{98}-1}{2018^{99}-1}\)
\(\Leftrightarrow2018F=\frac{2018^{99}-2018}{2018^{99}-1}\)
\(\Leftrightarrow2018F=1-\frac{2017}{2018^{99}-1}\) (2)
Mà \(2018^{100}>2018^{99}>0\)
\(\Leftrightarrow2018^{100}-1>2018^{99}-1\)
\(\Leftrightarrow\frac{2017}{2018^{100}-1}< \frac{2017}{2018^{99}-1}\)
\(\Leftrightarrow-\frac{2017}{2018^{100}-1}>-\frac{2017}{2018^{99}-1}\)
\(\Leftrightarrow1-\frac{2017}{2018-1}>1-\frac{2017}{2018^{99}-1}\) (3)
Từ (1) ;(2) và (3) <=> 2018E > 2018 F > 0
<=> E > F
Vậy E > F
@@ Học tốt
Chiyuki Fujito
K cần tk
\(2018^{13}-2018^{12}=2018^{12}\left(2018-1\right)=2018^{12}.2017\)
\(2018^{11}.2018^{10}=2018^{12}.2018^9\)
Nhận thấy: \(2017< 2018^9\)=> \(2018^{12}.2017< 2018^{12}.2018^9\)
hay \(2018^{13}-2018^{12}< 2018^{11}.2018^{10}\)
B= 1/1.2+1/2.3+...+1/2019.2020
B=1/1-1/2+1/2-1/3+...+1/2019-1/2020
B=1-1/2020=2020/2020-1/2020=2019/2020
Đặt : \(A=\frac{2018^{13}+1}{2018^{14}+1}\); \(B=\frac{2018^{2012}+1}{2018^{2013}+1}\)
Ta có :
\(2018A=\frac{2018.\left(2018^{13}+1\right)}{2018^{14}+1}\)
\(2018A=\frac{2018^{14}+2018}{2018^{14}+1}=\frac{2018^{14}+1+2017}{2018^{14}+1}=\frac{2018^{2014}+1}{2018^{14}+1}+\frac{2017}{2018^{14}+1}=1+\frac{2017}{2018^{14}+1}\)
\(2018B=\frac{2018.\left(2018^{12}+1\right)}{2018^{13}+1}\)
\(2018B=\frac{2018^{13}+2018}{2018^{13}+1}=\frac{2018^{13}+1+2017}{2018^{13}+1}=\frac{2018^{13}+1}{2018^{13}+1}+\frac{2017}{2018^{13}+1}=1+\frac{2017}{2018^{13}+1}\)
Vì 201814 + 1 > 201813 + 1 nên \(\frac{2017}{2018^{14}+1}< \frac{2017}{2018^{13}+1}\)
\(\Rightarrow1+\frac{2017}{2018^{14}+1}< 1+\frac{2017}{2018^{13}+1}\)Hay : A < B
Vậy A < B
Đặt \(A=\frac{2018^{13}+1}{2018^{14}+1}\)và \(B=\frac{2018^{12}+1}{2018^{13}+1}\)
Ta có :
\(2018A=\frac{\left(2018^{13}+1\right)\times2018}{2018^{14}+1}\) \(2018B=\frac{\left(2018^{12}+1\right)\times2018}{2018^{13}+1}\)
\(2018A=\frac{2018^{14}+2018}{2018^{14}+1}\) \(2018B=\frac{2018^{13}+2018}{2018^{13}+1}\)
\(2018A=\frac{2018^{14}+1+2017}{2018^{14}+1}\) \(2018B=\frac{2018^{13}+1+2017}{2018^{13}+1}\)
\(2018A=1+\frac{2017}{2018^{14}+1}\) \(2018B=1+\frac{2017}{2018^{13}+1}\)
Vì \(\frac{2017}{2018^{14}+1}< \frac{2017}{2018^{13}+1}\)
\(\Rightarrow2018A< 2018B\)
\(\Rightarrow A< B\)
Vậy : \(\frac{2018^{13}+1}{2018^{14}+1}< \frac{2018^{12}+1}{2018^{13}+1}\)