Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\frac{595959}{454545}-\frac{14141414}{15151515}\)
\(A=\frac{595959:10101}{454545:10101}-\frac{14141414:1010101}{15151515:1010101}\)
\(A=\frac{59}{45}-\frac{14}{15}\)
\(A=\frac{59}{45}-\frac{42}{45}=\frac{17}{45}\)
\(B=\frac{65+891+135+909}{731-47+69-253}\)
\(B=\frac{\left(65+135\right)+\left(891+909\right)}{\left(731+69\right)-\left(47+253\right)}\)
\(B=\frac{200+1800}{800-300}=\frac{2000}{500}=4\)
Giá trị của \(\frac{-22}{45}\)là:
\(-22:45=-0,4888...\)
Giá trị của \(\frac{-51}{103}\)là:
\(-51:103=-0,4951...\)
Vì: \(-0,4888...< -0,4951...\)nên \(\frac{-22}{45}\)\(< \frac{-51}{103}\).
\(\frac{5}{8}=0,625;\frac{7}{10}=0,7\)
vì \(0,625< 0,7\)NÊN \(\frac{5}{8}< \frac{7}{10}\)
VẬY \(\frac{5}{8}< \frac{7}{10}\)
TK MN NHÉ
1.\(\frac{456}{461}va\frac{123}{128}\)
Ta có: \(\frac{456}{461}+\frac{5}{461}=1\)
\(\frac{123}{128}+\frac{5}{128}=1\)
vì \(\frac{5}{461}< \frac{5}{128}\)nên \(\frac{456}{461}>\frac{123}{128}\)
2.\(\frac{53}{57}va\frac{531}{571}\)
Vì \(\frac{53}{57}< 1\)
\(\Rightarrow\frac{53}{57}=\frac{530}{570}< \frac{530+1}{570+1}=\frac{531}{571}\)
\(\Rightarrow\frac{53}{57}< \frac{531}{571}\)
Ta có:
\(\frac{2010}{2009}=\frac{2009+1}{2009}=1+\frac{1}{2009}\)
\(\frac{2011}{2010}=\frac{2010+1}{2010}=1+\frac{1}{2010}\)
Vì \(2009<2010=>\frac{1}{2009}>\frac{1}{2010}\)
=>\(\frac{2010}{2009}>\frac{2011}{2010}\)
Ai tích mình mình tích lại
Các bạn xem mình làm có đúng ko ?
\(\frac{2010}{2009}=\frac{2009+1}{2009}=\frac{2009}{2009}+\frac{1}{2009}=1+\frac{1}{2009}\)
\(\frac{2011}{2010}=\frac{2010+1}{2010}=\frac{2010}{2010}+\frac{1}{2010}=1+\frac{1}{2010}\)
Ta thấy : \(\frac{1}{2009}>\frac{1}{2010}\)=> \(1+\frac{1}{2009}>1+\frac{1}{2010}\)
Vậy ................................
\(\frac{\frac{2}{5}+\frac{2}{7}+\frac{2}{9}+\frac{2}{11}+\frac{2}{13}}{\frac{3}{5}+\frac{3}{7}+\frac{3}{9}+\frac{3}{11}+\frac{3}{13}}\)+\(\frac{15151515}{45454545}\)=\(\frac{2}{3}\)(\(\frac{\frac{1}{5}+\frac{1}{7}+\frac{1}{9}+\frac{1}{11}+\frac{1}{13}}{\frac{1}{5}+\frac{1}{7}+\frac{1}{9}+\frac{1}{11}+\frac{1}{13}}\))+\(\frac{15.1010101}{45.1010101}\)
=\(\frac{2}{3}\)+\(\frac{15}{45}\)
=\(\frac{2}{3}\)+\(\frac{1}{3}\)=1
Ta có \(\frac{150150150150}{160160160160}=\frac{150150150150:1001001001}{160160160160:1001001001}=\frac{150}{160}=\frac{15}{16}\)
\(\frac{14141414}{15151515}=\frac{14141414:1010101}{15151515:1010101}=\frac{14}{15}\)
Vì \(\frac{15}{16}>\frac{14}{15}=>\frac{150150150150}{160160160160}>\frac{14141414}{15151515}\)
\(\frac{150150150150}{160160160160}=\frac{150.1010101}{160.1010101}=\frac{150}{160}=\frac{15}{16}\)
Ta có:
\(1-\frac{15}{16}=\frac{1}{16}\)
\(1-\frac{14}{15}=\frac{1}{15}\)
\(\frac{1}{16}< \frac{1}{15}\)
\(\Rightarrow\frac{15}{16}>\frac{14}{15}\)
\(\Rightarrow\frac{150150150150}{160160160160}>\frac{14}{15}\)