K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 9 2017

Nhận xét : trong các phân số cùng tử, phân số nào có mẫu lớn hơn thì lớn hơn.

Ta nhận thấy rằng: \(\frac{1}{2010}< \frac{1}{2009}< \frac{1}{1007}\)

\(\frac{1}{2011}< \frac{1}{2009}< \frac{1}{1007}\)

\(\frac{1}{2012}< \frac{1}{2009}< \frac{1}{1007}\)

Ta thấy các phân số \(\frac{1}{2010};\frac{1}{2011};\frac{1}{2012}< \frac{1}{2009}< \frac{1}{2007}\)

\(\Rightarrow\frac{1}{2010}+\frac{1}{2011}+\frac{1}{2012}< \frac{1}{2009}+\frac{1}{1007}\)

11 tháng 3 2019

\(\frac{x+1}{2012}+\frac{x+2}{2011}=\frac{x+3}{2010}+\frac{x+4}{2009}\)

\(\Leftrightarrow\frac{x+1}{2012}+1+\frac{x+2}{2011}+1=\frac{x+3}{2010}+1+\frac{x+4}{2009}+1\)

\(\Leftrightarrow\frac{x+2013}{2012}+\frac{x+2013}{2011}=\frac{x+2013}{2010}+\frac{x+2013}{2009}\)

\(\Leftrightarrow\left(x+2013\right)\left(\frac{1}{2012}+\frac{1}{2011}-\frac{1}{2010}-\frac{1}{2009}\right)=0\Leftrightarrow x=-2013\)

11 tháng 3 2019

\(\frac{x+1}{2012}+\frac{X+2}{2011}=\frac{X+3}{2010}+\frac{X+4}{2009}.\)

\(\Leftrightarrow\frac{X+1}{2012}+\frac{X+2}{2011}+2=\frac{X+3}{2010}+\frac{X+4}{2009}+2\)

\(\Leftrightarrow\frac{x+1}{2012}+1+\frac{x+2}{2011}+1=\frac{x+3}{2010}+1+\frac{x+4}{2009}+1\)

\(\Leftrightarrow\frac{x+2013}{2012}+\frac{x+2013}{2012}=\frac{x+2013}{2010}+\frac{x+2013}{2009}\)

\(\Leftrightarrow\left(x+2013\right).\left\{\frac{1}{2012}+\frac{1}{2011}-\frac{1}{2010}-\frac{1}{2009}\right\}=0\)

Mà \(\frac{1}{2012}+\frac{1}{2011}-\frac{1}{2010}-\frac{1}{2009}>0\)

\(\Leftrightarrow x+2013=0\)

\(\Leftrightarrow x=-2013\)

KL ; PT có Nghiệm \(S=\left\{-2013\right\}\)

14 tháng 3 2019

\(\frac{x-1}{2013}+\frac{x-2}{2012}+\frac{x-3}{2011}=\frac{x-4}{2010}+\frac{x-5}{2009}+\frac{x-6}{2008}\)

\(\Leftrightarrow\)\(\left(\frac{x-1}{2013}-1\right)+\left(\frac{x-2}{2012}-1\right)+\left(\frac{x-3}{2011}-1\right)=\left(\frac{x-4}{2010}-1\right)+\left(\frac{x-5}{2009}-1\right)+\left(\frac{x-6}{2008}-1\right)\)

\(\Leftrightarrow\frac{x-2014}{2013}+\frac{x-2014}{2012}+\frac{x-2013}{2011}=\frac{x-2014}{2010}+\frac{x-2014}{2009}+\frac{x-2014}{2008}\)

\(\Leftrightarrow\left(x-2014\right)\left(\frac{1}{2013}+\frac{1}{2012}+\frac{1}{2011}-\frac{1}{2010}-\frac{1}{2009}-\frac{1}{2008}\right)=0\)

tự làm nốt~

14 tháng 3 2019

kudo shinichi làm sai ở chỗ:

\(\frac{x-2013}{2011}\)phải là \(\frac{x-2014}{2011}\)mới đúng nhé

11 tháng 2 2020
https://i.imgur.com/KDgoiE0.jpg
6 tháng 2 2018

Ta có :

\(\frac{x+1}{2012}+\frac{x+2}{2011}+\frac{x+3}{2010}=\frac{x+4}{2009}+\frac{x+5}{2008}+\frac{x+6}{2007}\)

\(\left(\frac{x+1}{2012}+1\right)+\left(\frac{x+2}{2011}+1\right)+\left(\frac{x+3}{2010}+1\right)=\left(\frac{x+4}{2009}+1\right)+\left(\frac{x+5}{2008}+1\right)+\left(\frac{x+6}{2007}+1\right)\)

\(\Leftrightarrow\)\(\frac{x+2013}{2012}+\frac{x+2013}{2011}+\frac{x+2013}{2010}=\frac{x+2013}{2009}+\frac{x+2013}{2008}+\frac{x+2013}{2007}\)

\(\Leftrightarrow\)\(\left(x+2013\right).\left(\frac{1}{2012}+\frac{1}{2011}+\frac{1}{2010}\right)=\left(x+2013\right).\left(\frac{1}{2009}+\frac{1}{2008}+\frac{1}{2007}\right)\)

\(\Leftrightarrow\)\(\frac{1}{2012}+\frac{1}{2011}+\frac{1}{2010}=\frac{1}{2009}+\frac{1}{2008}+\frac{1}{2007}\)\(\left(1\right)\)

Mà \(\frac{1}{2012}< \frac{1}{2009}\)\(;\)\(\frac{1}{2011}< \frac{1}{2008}\)\(;\)\(\frac{1}{2010}< \frac{1}{2007}\)

\(\Rightarrow\)\(\frac{1}{2012}+\frac{1}{2011}+\frac{1}{2010}< \frac{1}{2009}+\frac{1}{2008}+\frac{1}{2007}\)\(\left(2\right)\)

Từ \(\left(1\right)\)và \(\left(2\right)\)suy ra không có giá trị nào của \(x\)thoả mãn đề bài 

Vậy không có gía trị nào của \(x\)hay \(x\in\left\{\varnothing\right\}\)

8 tháng 5 2020

\(\frac{x-1}{2013}+\frac{x-2}{2012}+\frac{x-3}{2011}=\frac{x-4}{2010}+\frac{x-5}{2009}+\frac{x-6}{2008}\)  ( có lẽ đề như này ) 

\(\Leftrightarrow\frac{x-1}{2013}-1+\frac{x-2}{2012}-1+\frac{x-3}{2011}-1=\frac{x-4}{2010}-1+\frac{x-5}{2009}-1+\frac{x-6}{2008}-1\)

\(\Leftrightarrow\frac{x-2014}{2013}+\frac{x-2014}{2012}+\frac{x-2014}{2011}-\frac{x-2014}{2010}-\frac{x-2014}{2009}-\frac{x-2014}{2008}=0\)

\(\Leftrightarrow\left(x-2014\right)\left(\frac{1}{2013}+\frac{1}{2012}+\frac{1}{2011}-\frac{1}{2010}-\frac{1}{2009}-\frac{1}{2008}\right)=0\)

\(\Leftrightarrow x-2014=0\left(\frac{1}{2013}+\frac{1}{2012}+\frac{1}{2011}-\frac{1}{2010}-\frac{1}{2009}-\frac{1}{2008}\ne0\right)\)

\(\Leftrightarrow x=2014\)

...

Ta có : \(x^2+9x+20=x^2+4x+5x+20=\left(x+4\right)\left(x+5\right)\)

\(x^2+11x+30=x^2+5x+6x+30=\left(x+5\right)\left(x+6\right)\)

\(x^2+13x+42=x^2+6x+7x+42=\left(x+6\right)\left(x+7\right)\)

\(\Rightarrow Pt\Leftrightarrow\frac{1}{\left(x+4\right)\left(x+5\right)}+\frac{1}{\left(x+5\right)\left(x+6\right)}+\frac{1}{\left(x+6\right)\left(x+7\right)}=\frac{1}{18}\) (*)\(ĐKXĐ:x\ne-4;x\ne-5;x\ne-6;x\ne-7\)

(*) \(\Leftrightarrow\frac{1}{x+4}-\frac{1}{x+5}+\frac{1}{x+5}-\frac{1}{x+6}+\frac{1}{x+6}-\frac{1}{x+7}=\frac{1}{18}\)

\(\Leftrightarrow\frac{1}{x+4}-\frac{1}{x+7}=\frac{1}{18}\)

\(\Leftrightarrow\frac{x+7-x-4}{\left(x+4\right)\left(x+7\right)}=\frac{1}{18}\)

\(\Leftrightarrow3.18=x^2+4x+7x+28\)

\(\Leftrightarrow x^2-2x+13x-26=0\)

\(\Leftrightarrow\left(x-2\right)\left(x+13\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x-2=0\\x+13=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=2\left(tm\right)\\x=-13\left(tm\right)\end{cases}}}\)

4 tháng 2 2018

Ta có: \(\frac{x-1}{2012}+\frac{x-2}{2011}+...+\frac{x-2012}{1}=2012\)

\(\Leftrightarrow\frac{x-1}{2012}-1+\frac{x-2}{2011}-1+\frac{x-3}{2010}-1+....+\frac{x-2012}{1}-1=2012-2012\)

\(\Leftrightarrow\frac{x-2013}{2012}+\frac{x-2013}{2011}+\frac{x-2013}{2010}+...+\frac{x-2013}{1}=0\)

\(\Leftrightarrow\left(x-2013\right)\left(\frac{1}{2012}+\frac{1}{2011}+\frac{1}{2011}+....+1\right)=0\)

Vì \(\frac{1}{2012}+\frac{1}{2011}+\frac{1}{2010}+...+1\ne0\)

\(\Rightarrow x+2013=0\)

\(\Rightarrow x=2013\)

Vậy x = 2013

4 tháng 2 2018

PT đã cho tương đương với:

      \(\frac{x-1}{2012}-1+\frac{x-2}{2011}-1+\frac{x-3}{2010}-1+...+\frac{x-2012}{1}-1+2010=2012\)

\(\Leftrightarrow\frac{x-2013}{2012}+\frac{x-2013}{2011}+\frac{x-2013}{2010}+...+\frac{x-2013}{1}=0\)

\(\Leftrightarrow\left(x-2013\right).\left(\frac{1}{2012}+\frac{1}{2011}+\frac{1}{2010}+...+\frac{1}{1}\right)=0\)

\(\Leftrightarrow x=2013\)