K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 10 2015

Đặt A = \(\frac{1}{101^2}+\frac{1}{102^2}+...+\frac{1}{205^2}\)

=> A < \(\frac{1}{100.101}+\frac{1}{101.102}+....+\frac{1}{204.205}\)

=> A < \(\frac{1}{100}-\frac{1}{101}+\frac{1}{101}-\frac{1}{102}+...+\frac{1}{204}-\frac{1}{205}\)

=> A < \(\frac{1}{100}-\frac{1}{205}\)

=> A < \(\frac{1}{2100}\)

Đặt B = \(\frac{1}{2^2.3.5^2.7}=\frac{1}{2100}\)

=> A < B

=> \(\frac{1}{101^2}+\frac{1}{102^2}+...+\frac{1}{205^2}

25 tháng 10 2015

giỏi lắm mình cũng biết làm chỉ hỏi chơi thôi 

ủng hộ

28 tháng 6 2016

\(E=\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{97.99}\)

\(E=\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{97}-\frac{1}{99}\)

\(E=\frac{1}{1}-\frac{1}{99}\)

\(E=\frac{98}{99}\)

28 tháng 6 2016

E= \(\frac{2}{1.3}.\frac{2}{3.5}+...+\frac{2}{97.99}\)
E = 1 - \(\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{97}-\frac{1}{99}\)
E = 1 - 1/99
E = 98 / 99
Chúc bạn học tốt 

21 tháng 4 2016

Ta có: 2/1.3 = 1/1 - 1/3

          2/3.5 = 1/3 - 1/5

\(\Rightarrow\) 2/1.3 + 2/3.5 + 2/5.7 + ... + 2/99.101

=   1/1 - 1/3 + 1/3 - 1/5 + 1/5 - 1/7 + ... + 1/99 - 1/100

=   1 - 1/100

=    99/100

21 tháng 4 2016

tích trên sẽ = 1-1/3+1/3-1/5+1/5-1/7+...+1/99-1/100

=1-1/100 =99/100

bạn nhớ rằng  k/n.(n+k) sẽ = 1/n-1/n+k

19 tháng 7 2017

Ta có : \(\frac{1}{10.9}-\frac{1}{9.8}-.....-\frac{1}{2.1}\)

\(=\frac{1}{90}-\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+.....+\frac{1}{9.8}\right)\)

\(=\frac{1}{90}-\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+.....+\frac{1}{8}-\frac{1}{9}\right)\)

\(=\frac{1}{90}-\left(1-\frac{1}{9}\right)\)

\(=\frac{1}{90}-\frac{8}{9}=\frac{-79}{90}\)

1 tháng 9 2015

\(S=\left(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}\right)-\left(\frac{1}{2.4}+\frac{1}{4.6}+\frac{1}{6.8}+\frac{1}{8.10}\right)\)

=>\(S=\frac{1}{2}.\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}\right)-\frac{1}{2}.\left(\frac{2}{2.4}+\frac{2}{4.6}+\frac{2}{6.8}+\frac{2}{8.10}\right)\)

=>\(S=\frac{1}{2}.\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}\right)-\frac{1}{2}.\left(\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+\frac{1}{6}-\frac{1}{8}+\frac{1}{8}-\frac{1}{10}\right)\)

=>\(S=\frac{1}{2}.\left(1-\frac{1}{9}\right)-\frac{1}{2}.\left(\frac{1}{2}-\frac{1}{10}\right)\)

=>\(S=\frac{1}{2}.\frac{8}{9}-\frac{1}{2}.\frac{2}{5}\)

=>\(S=\frac{4}{9}-\frac{1}{5}\)

=>\(S=\frac{11}{45}\)

1 tháng 9 2015

lê chí cường dung 

13 tháng 12 2018

Đặt \(A=\frac{1}{3\cdot5}+\frac{1}{5\cdot7}+...+\frac{1}{n\left(n+2\right)}\)

\(2A=\frac{2}{3\cdot5}+\frac{2}{5\cdot7}+...+\frac{2}{n\left(n+2\right)}\)

\(2A=\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{n}-\frac{1}{n+2}\)

\(2A=\frac{1}{3}-\frac{1}{n+2}\)

\(2A=\frac{n-1}{3\left(n+2\right)}\)

\(A=\frac{n-1}{6\left(n+2\right)}\)

Ta có : \(\frac{1}{2}=\frac{3\left(n+2\right)}{2\cdot3\left(n+2\right)}=\frac{3n+6}{6\left(n+2\right)}\)

Dễ thấy \(n-1< 3n+6\)

Do đó \(\frac{1}{2}>A\)

13 tháng 12 2018

1/2×(1/3-1/5+1/5-1/7+.....+1/n-1/n+2)

=> 1/2×(1/3-1/n+2) <1/2

=> 1/3-1/n+2< 1

Vậy 1/3×5+1/5×7+....+1/n×n+2 < 1/2

4 tháng 1 2016

Ta có : \(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{x\left(x+2\right)}=\frac{16}{34}\)

=> \(2\left(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{x\left(x+2\right)}\right)=2.\frac{16}{34}\)

=> \(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{x\left(x+2\right)}=\frac{16}{17}\)

=> \(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{x}-\frac{1}{x+2}=\frac{16}{17}\)

=> \(1-\frac{1}{x+2}=\frac{16}{17}\)

=> \(\frac{1}{x+2}=1-\frac{16}{17}=\frac{1}{17}\)

=> \(x+2=17\)

=> \(x=15\)

4 tháng 1 2016

=>1/1-1/3+1/3-1/5+1/5-1/7+....+1/x-1/(x+2)=16/34

=>1/1-1/(x+2)=16/34

=>1/(x+2)=1-16/34

=>1/(x+2)=9/17

=>(x+2).9=17

=>(x+2)=17/9

=>x=17/9-2

=>x=-1/9(không là số tự nhiên)

vậy không có số tự nhiên x thoả mãn điều kiện bài toán 

2 tháng 1 2016

Giải rõ ràng. Không được thử số

AH
Akai Haruma
Giáo viên
6 tháng 7

Lời giải:

$x(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7})< 1\frac{6}{7}$

$x(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7})< \frac{13}{7}$

$x(1-\frac{1}{7})< \frac{13}{7}$

$x.\frac{6}{7}< \frac{13}{7}$

$x< \frac{13}{7}: \frac{6}{7}=\frac{13}{6}$

Vì $x$ là số nguyên nên $x\leq 2$

Vậy $x$ là các số nguyên sao cho $x\leq 2$.