K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 4 2016

Ta có: 2/1.3 = 1/1 - 1/3

          2/3.5 = 1/3 - 1/5

\(\Rightarrow\) 2/1.3 + 2/3.5 + 2/5.7 + ... + 2/99.101

=   1/1 - 1/3 + 1/3 - 1/5 + 1/5 - 1/7 + ... + 1/99 - 1/100

=   1 - 1/100

=    99/100

21 tháng 4 2016

tích trên sẽ = 1-1/3+1/3-1/5+1/5-1/7+...+1/99-1/100

=1-1/100 =99/100

bạn nhớ rằng  k/n.(n+k) sẽ = 1/n-1/n+k

1 tháng 9 2015

\(S=\left(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}\right)-\left(\frac{1}{2.4}+\frac{1}{4.6}+\frac{1}{6.8}+\frac{1}{8.10}\right)\)

=>\(S=\frac{1}{2}.\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}\right)-\frac{1}{2}.\left(\frac{2}{2.4}+\frac{2}{4.6}+\frac{2}{6.8}+\frac{2}{8.10}\right)\)

=>\(S=\frac{1}{2}.\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}\right)-\frac{1}{2}.\left(\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+\frac{1}{6}-\frac{1}{8}+\frac{1}{8}-\frac{1}{10}\right)\)

=>\(S=\frac{1}{2}.\left(1-\frac{1}{9}\right)-\frac{1}{2}.\left(\frac{1}{2}-\frac{1}{10}\right)\)

=>\(S=\frac{1}{2}.\frac{8}{9}-\frac{1}{2}.\frac{2}{5}\)

=>\(S=\frac{4}{9}-\frac{1}{5}\)

=>\(S=\frac{11}{45}\)

1 tháng 9 2015

lê chí cường dung 

28 tháng 6 2016

\(E=\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{97.99}\)

\(E=\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{97}-\frac{1}{99}\)

\(E=\frac{1}{1}-\frac{1}{99}\)

\(E=\frac{98}{99}\)

28 tháng 6 2016

E= \(\frac{2}{1.3}.\frac{2}{3.5}+...+\frac{2}{97.99}\)
E = 1 - \(\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{97}-\frac{1}{99}\)
E = 1 - 1/99
E = 98 / 99
Chúc bạn học tốt 

9 tháng 7 2016

Mình chỉ làm cho bạn câu d và e thôi 

d)  ( 1 - 1/2 + 1/2 - 1/3 + 1/3 - 1/4 +....... +1/99 - 1/100 ) . (x - 3)=1

     ( 1 - 1/100 ) . (x - 3 )=1

     99/100.(x -3)=1

     x - 3 = 1:99/100

     x - 3 =100/99

     x = 100/99 + 3

     x = 397/99

e) (1/2 . (1 - 1/3 + 1/3 - 1/5 + 1/5 -1/7 +.....+1/99 - 1/101 ) . (x+2) =3/101

   (1/2 . ( 1 - 1/101 ).(x+2)=3/101

   (1/2 . 100/101 ) . (x + 2) =3/101

   100/202 . ( x + 2 )= 3/101

   50/101 . (x + 2 ) = 3/101

  x + 2 = 3/101 :50/101

  x+2=3/50

  x =3/50-2

x= -97/100

14 tháng 7 2016

\(Q=\left(1+\frac{1}{1.3}\right).\left(1+\frac{1}{2.4}\right).\left(1+\frac{1}{3.5}\right)...\left(1+\frac{1}{99.101}\right)\)

\(Q=\frac{4}{1.3}.\frac{9}{2.4}.\frac{16}{3.5}...\frac{10000}{99.101}\)

\(Q=\frac{2.2}{1.3}.\frac{3.3}{2.4}.\frac{4.4}{3.5}...\frac{100.100}{99.101}\)

\(Q=\frac{2.3.4...100}{1.2.3...99}.\frac{2.3.4...100}{3.4.5...101}\)

\(Q=100.\frac{2}{101}\)

\(Q=\frac{200}{101}\)

14 tháng 7 2016

\(Q=\left(1+\frac{1}{1.3}\right).\left(1+\frac{1}{2.4}\right).\left(1+\frac{1}{3.5}\right)...\left(1+\frac{1}{99.101}\right)\)

\(Q=\frac{4}{1.3}.\frac{9}{2.4}.\frac{16}{3.5}...\frac{10000}{99.101}\)

\(=\frac{2.2}{1.3}.\frac{3.3}{2.4}.\frac{4.4}{3.5}...\frac{100.100}{99.101}\)

\(Q=\frac{2.3.4...100}{1.2.3...99}.\frac{2.3.4...100}{3.4.5...101}\)

\(Q=100.\frac{2}{101}\)

\(Q=\frac{200}{101}\)

19 tháng 7 2017

Ta có : \(\frac{1}{10.9}-\frac{1}{9.8}-.....-\frac{1}{2.1}\)

\(=\frac{1}{90}-\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+.....+\frac{1}{9.8}\right)\)

\(=\frac{1}{90}-\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+.....+\frac{1}{8}-\frac{1}{9}\right)\)

\(=\frac{1}{90}-\left(1-\frac{1}{9}\right)\)

\(=\frac{1}{90}-\frac{8}{9}=\frac{-79}{90}\)

20 tháng 1 2018

a, Ta có \(\frac{x-1}{2011}+\frac{x-2}{2010}-\frac{x-3}{2009}=\frac{x-4}{2008}\)

<=> \(\frac{x-1}{2011}+\frac{x-2}{2010}-\frac{x-3}{2009}-\frac{x-4}{2008}=0\)

<=> \(\left(\frac{x-1}{2011}-1\right)+\left(\frac{x-2}{2010}-1\right)-\left(\frac{x-3}{2009}-1\right)-\left(\frac{x-4}{2008}-1\right)=0\)

<=>\(\frac{x-2012}{2011}+\frac{x-2012}{2010}-\frac{x-2012}{2009}-\frac{x-2012}{2008}=0\) 

<=> \(\left(x-2012\right)\left(\frac{1}{2011}+\frac{1}{2010}-\frac{1}{2009}-\frac{1}{2008}\right)=0\)

Mà \(\frac{1}{2011}+\frac{1}{2010}-\frac{1}{2009}-\frac{1}{2008}\ne0\)

=> \(x-2012=0=>x=2012\)

20 tháng 1 2018

b, \(\frac{1}{1.3}+\frac{1}{3.5}+...+\frac{1}{\left(2x-1\right)\left(2x+1\right)}=\frac{49}{99}\)

=>\(\frac{2}{1.3}+\frac{2}{3.5}+...+\frac{2}{\left(2x-1\right)\left(2x+1\right)}=2\cdot\frac{49}{99}\)

=>\(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{2x-1}-\frac{1}{2x+1}=\frac{98}{99}\)

=>\(1-\frac{1}{2x+1}=\frac{98}{99}\)

=>\(\frac{2x}{2x+1}=\frac{98}{99}\)

=>2x = 98

=>x = 49