K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Giải:

Ta có: 

2019.2020-1/2019.2020= 2019.2020/2019.2020 - 1/2019.2020

                                       =1-1/2019.2020

Tương tự:

2020.2021-1/2020.2021= 1-1/2020.2021

Vì 1/2019.2020 > 1/2020.2021 nên -1/2019.2020 < -1/2020.2021

(vì là số nguyên âm)

⇒ 1-1/2019.2020 < 1-1/2020.2021

⇔ 2019.2020-1/2019.2020 < 2020.2021-1/2020.2021

Chúc bạn học tốt!

\(A>\dfrac{2^{2018}}{2^{2018}+3^{2019}+5^{2020}}+\dfrac{3^{2019}}{2^{2018}+3^{2019}+5^{2020}}+\dfrac{5^{2020}}{5^{2020}+2^{2018}+3^{2019}}=1\)

\(B< \dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+\dfrac{1}{3\cdot4}+...+\dfrac{1}{2019\cdot2020}\)

\(=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{2019}-\dfrac{1}{2020}\)

=>B<1

=>A>B

3 tháng 4 2021

\(\dfrac{1}{2020}-\dfrac{1}{2021}=\dfrac{2021}{2020.2021}-\dfrac{2020}{2020.2021}=\dfrac{2021-2020}{2020.2021}=\dfrac{1}{2020.2021}\)

\(\dfrac{1}{2020\cdot2021}=\dfrac{2021-2020}{2020\cdot2021}=\dfrac{1}{2020}-\dfrac{1}{2021}\)(đpcm)

\(=\dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{2019}-\dfrac{1}{2020}\\ =\dfrac{1}{1}-\dfrac{1}{2020}=\dfrac{2019}{2020}\)

1 tháng 8 2021

Sai :(

ko phải \(\dfrac{1}{1}\)-\(\dfrac{1}{2}\)+\(\dfrac{1}{2}\)-\(\dfrac{1}{3}\)

Mà là \(\dfrac{1}{1}\)-\(\dfrac{1}{2}\)+\(\dfrac{1}{3}\)-\(\dfrac{1}{4}\)

11 tháng 5 2023

S=1/2x3+1/4x5+1/6x7+...+1/2022x2023<1/2x3+1/3x4+1/4x5+...+1/1010x1011
=1/2-1/1011=1009/2022<1011/2023
=>S<1011/2023

 

25 tháng 4

S= 1/2.3 + 1/4.5 + 1/6.7 +.....+ 1 2020.2021 + 1 2022.2023 . : So sánh S và 1011/2023 

trả lời:

Đương nhiên là A sẽ lớn hơn B vì các thừa số của A lớn hơn các thừa số của B.

Vậy A>B

học tốt nha bạn!

11 tháng 10 2019

vì 2020>2019>2009>2000nen a>b

chúc học tốt...................

16 tháng 7 2020

thôi mik làm đc rồi

B= 1/1.2+1/2.3+...+1/2019.2020

B=1/1-1/2+1/2-1/3+...+1/2019-1/2020

B=1-1/2020=2020/2020-1/2020=2019/2020

14 tháng 5 2019

\(A=\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}>\frac{a}{a+b+c}+\frac{b}{a+b+c}+\frac{c}{a+b+c}=\frac{a+b+c}{a+b+c}=1.\) 

Với  :   \(a=2^{2018};.b=3^{2019};,c=5^{2020}.\) 

Và   :   \(B=\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{2019.2020}=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2019}-\frac{1}{2020}\Leftrightarrow\) 

             \(B=1-\frac{1}{2020}< 1< A\)