Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có :
\(A=\dfrac{2019\times2020}{2019\times2020+1}=\dfrac{2019\times2020+1-1}{2019\times2020+1}=1-\dfrac{1}{2019\times2020+1}\)
Suy ra A < 1 (1)
Lại có \(B=\dfrac{2020}{2019}=\dfrac{2019+1}{2019}=\dfrac{2019}{2019}+\dfrac{1}{2019}=1+\dfrac{1}{2019}\)
Suy ra B > 1 (2)
Từ (1) và (2) ta có : A < 1 < B
=> A < B
Vậy A < B
Dấu ''\(x\)'' là dấu nhân chăng ?
\(A=\frac{2019x2020}{2019x2020+1}\)và \(B=\frac{2020}{2021}\)
Bài ra ta có :
Xét \(A=\frac{2019x2020}{2019x\left(2020+1\right)}=\frac{2020}{2020+1}=\frac{2020}{2021}\)
Vì \(\frac{2020}{2021}=\frac{2020}{2021}\)
Suy ra A = B theo (ĐPCM)
\(A=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2019.2020}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-...+\frac{1}{2019}-\frac{1}{2020}\)
\(=1-\frac{1}{2020}>1\)
\(a,\dfrac{199}{200}=1-\dfrac{1}{200};\dfrac{200}{201}=1-\dfrac{1}{201}\\ Vì:\dfrac{1}{200}>\dfrac{1}{201}\\ \Rightarrow1-\dfrac{1}{200}< 1-\dfrac{1}{201}\\ Vậy:\dfrac{199}{200}< \dfrac{200}{201}\\ b,\dfrac{2001}{2002}=1-\dfrac{1}{2002};\dfrac{2002}{2003}=1-\dfrac{1}{2003}\\ Vì:\dfrac{1}{2002}>\dfrac{1}{2003}\Rightarrow1-\dfrac{1}{2002}< 1-\dfrac{1}{2003}\\ Vậy:\dfrac{2001}{2002}< \dfrac{2002}{2003}\)
\(c,\dfrac{2021}{2020}=1+\dfrac{1}{2020};\dfrac{2020}{2019}=1+\dfrac{1}{2019}\\ Vì:\dfrac{1}{2020}< \dfrac{1}{2019}\\ Nên:1+\dfrac{1}{2020}< 1+\dfrac{1}{2019}\\ Vậy:\dfrac{2021}{2020}< \dfrac{2020}{2019}\\ d,\dfrac{199}{198}=1+\dfrac{1}{198};\dfrac{200}{199}=1+\dfrac{1}{199}\\ Vì:\dfrac{1}{198}>\dfrac{1}{199}\\ Nên:1+\dfrac{1}{198}>1+\dfrac{1}{199}\\ Vậy:\dfrac{199}{198}>\dfrac{200}{199}\)
Kiến thức cần nhớ:
Tử số 1 lớn mẫu số 1; tử số 2 lớn hơn mẫu số 2
Tử số 1 trừ mẫu số 1 = tử số 2 trừ mẫu số 2 thì ta dùng phương pháp so sánh phân số bằng phần hơn em nhé. Hai phân số, phân số nào có phần hơn lớn hơn thì phân số đó lớn hơn
\(\dfrac{a+2020}{a+2017}\) = 1 + \(\dfrac{3}{a+2017}\)
\(\dfrac{a+2021}{a+2018}\) = 1 + \(\dfrac{3}{a+2018}\)
Vì \(\dfrac{3}{a+2017}\) > \(\dfrac{3}{a+2018}\)
Vậy \(\dfrac{a+2020}{a+2017}\) > \(\dfrac{a+2021}{a+2018}\)
Ta có \(\frac{2018\times2019+4036}{2019\times2020-2}\)
\(=\frac{\left(2020-2\right)\times2019}{2019\times2020-2}\)
\(=\frac{2020\times2019-2\times2019+4036}{2019\times2020-2}\)
\(=\frac{2020\times2019-4038+4036}{2019\times2020-2}\)
\(=\frac{2020\times2019-2}{2019\times2020-2}\)
\(=1\)
? x ? = ?
=?
= ? : ?
=...................
hok tốt :)))
(LAUGH) :)))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))