K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 12 2015

 

\(1-A=1-\frac{n^5+1}{n^6+1}=\frac{n^5\left(n-1\right)}{n^6+1}\)

\(1-B=1-\frac{n^4+1}{n^5+1}=\frac{n^4\left(n-1\right)}{n^5+1}=\frac{n^5\left(n-1\right)}{n^6+n}\)

Vì n6 + 1 < n6 +n 

=> 1 -A > 1-B

=> A < B

3 tháng 12 2015

\(1-A=\frac{n^6-n^5}{n^6+1}=\frac{n^5\left(n-1\right)}{n^6+1}\)

\(1-B=\frac{n^5-n^4}{n^5+1}=\frac{n^4\left(n-1\right)}{n^5+1}=\frac{n^5\left(n-1\right)}{n^6+n}\)

Vì  n6 +1 < n6 + n

=> 1 -A > 1-B

Hay A < B

13 tháng 12 2018

Đặt \(A=\frac{1}{3\cdot5}+\frac{1}{5\cdot7}+...+\frac{1}{n\left(n+2\right)}\)

\(2A=\frac{2}{3\cdot5}+\frac{2}{5\cdot7}+...+\frac{2}{n\left(n+2\right)}\)

\(2A=\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{n}-\frac{1}{n+2}\)

\(2A=\frac{1}{3}-\frac{1}{n+2}\)

\(2A=\frac{n-1}{3\left(n+2\right)}\)

\(A=\frac{n-1}{6\left(n+2\right)}\)

Ta có : \(\frac{1}{2}=\frac{3\left(n+2\right)}{2\cdot3\left(n+2\right)}=\frac{3n+6}{6\left(n+2\right)}\)

Dễ thấy \(n-1< 3n+6\)

Do đó \(\frac{1}{2}>A\)

13 tháng 12 2018

1/2×(1/3-1/5+1/5-1/7+.....+1/n-1/n+2)

=> 1/2×(1/3-1/n+2) <1/2

=> 1/3-1/n+2< 1

Vậy 1/3×5+1/5×7+....+1/n×n+2 < 1/2

30 tháng 3 2020

Câu 2: n= 12

Do A=\(\frac{\left(2x2\right)^6x\left(2x3\right)^6}{3^6x2^6}=2^{12}\)

31 tháng 3 2020

Bạn có thể giả thích rõ hơn ko???

10 tháng 9 2016

\(\frac{2n+1}{n+3}=\frac{n+n+1}{n+3}=\frac{n}{n+3}+\frac{n+1}{n+3}\)

Do: \(\frac{n}{n+3}< \frac{n}{n+1};\frac{n+1}{n+3}< \frac{n+1}{n+2}\Rightarrow\frac{n}{n+3}+\frac{n+1}{n+3}< \frac{n}{n+1}+\frac{n+1}{n+2}\Rightarrow\frac{2n+1}{n+3}< \frac{n}{n+1}+\frac{n+1}{n+2}\)

24 tháng 6 2018

Ta có : 

\(\frac{1}{2^2}< \frac{1}{1.2}\)

\(\frac{1}{3^2}< \frac{1}{2.3}\)

\(\frac{1}{4^2}< \frac{1}{3.4}\)

\(............\)

\(\frac{1}{n^2}< \frac{1}{\left(n-1\right)n}\)

\(\Rightarrow\)\(A=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{n^2}< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{\left(n-1\right)n}\)

\(\Rightarrow\)\(A< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{\left(n-1\right)n}\)

\(\Rightarrow\)\(A< \frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{n-1}-\frac{1}{n}\)

\(\Rightarrow\)\(A< 1-\frac{1}{n}< 1\)

Vậy \(A< 1\)

Chúc bạn học tốt ~ 

17 tháng 12 2016

Ta có :

\(M=133.\left(\frac{1}{1.1996}+\frac{1}{2.1997}+..........+\frac{1}{21.2016}\right)\)

\(\Rightarrow M.15=133.15.\left(\frac{1}{1.1996}+\frac{1}{2.1997}+.......+\frac{1}{21.2016}\right)\)

\(\Rightarrow M.15=\frac{1995}{1.1996}+\frac{1995}{2.1997}+........+\frac{1995}{21.2016}\)

\(\Rightarrow M.15=1-\frac{1}{1996}+\frac{1}{2}-\frac{1}{1997}+...........+\frac{1}{21}-\frac{1}{2016}\)

\(\Rightarrow M.15=\left(1+\frac{1}{2}+\frac{1}{3}+......+\frac{1}{21}\right)-\left(\frac{1}{1996}+\frac{1}{1997}+.....+\frac{1}{2016}\right)\)

Ta có:

\(N.15=\frac{7}{5}.15\left(\frac{1}{1.22}+\frac{1}{2.23}+..........+\frac{1}{1995.2016}\right)\)

\(\Rightarrow N.15=\frac{21}{1.22}+\frac{21}{2.23}+..........+\frac{21}{1995.2016}\)

\(\Rightarrow N.15=1-\frac{1}{22}+\frac{1}{2}-\frac{1}{23}+.............+\frac{1}{1995}-\frac{1}{2016}\)

\(\Rightarrow N.15=\left(1+\frac{1}{2}+\frac{1}{3}+......+\frac{1}{1995}\right)-\left(\frac{1}{22}+\frac{1}{23}+.......+\frac{1}{2016}\right)\)

\(\Rightarrow N.15=\left(1+\frac{1}{2}+.....+\frac{1}{21}\right)+\left(\frac{1}{22}+\frac{1}{23}+....+\frac{1}{1995}-\frac{1}{22}-...-\frac{1}{2016}\right)\)

\(\Rightarrow N.15=\left(1+\frac{1}{2}+....\frac{1}{21}\right)-\left(\frac{1}{1996}+\frac{1}{1997}+....\frac{1}{2016}\right)\)

\(\Rightarrow N.15=M.15\Rightarrow M=N\)

17 tháng 12 2016

soyeon_Tiểubàng giải

Võ Đông Anh Tuấn

Silver bullet

Hoàng Lê Bảo Ngọc

Trần Việt Linh

Lê Nguyên Hạo

mấy bn giúp mk vs