Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt: (2^2015)+1/(2^2012)+1 là A và (2^2017)+1/(2^2014)+1 là B
1/8A=(2^2015)+1/(2^2015)+8=(2^2015)+8-7/(2^2015)+8=1-7/(2^2015)+8
1/8B=(2^2017)+1/(2^2017)+8=(2^2017)+8-7/(2^2017)+8=1-7/(2^2017)+8
Vì 2^2015+8<2^2017+8 nên 7/(2^2015+8)>7/(2^2017)+8 nên 1-7/(2^2015)+8<1-7/(2^2017)+8 từ đó suy ra B>A hay 2^2017+1/(2^2014)+1>(2^2015)+1/(2^2012)+1
Ta có:
\(B=2^{2012}+2^{2011}+...+2^3+2^2+2+1\)
\(\Rightarrow2B=2^{2013}+2^{2012}+...+2^4+2^3+2^2+2\)
\(\Rightarrow2B-B=\left(2^{2013}+2^{2012}+...+2^4+2^3+2^2+2\right)-\left(2^{2012}+...+1\right)\)
\(\Rightarrow B=2^{2013}-1\)
\(A=2^{2003}.9+2^{2003}.1005\)
\(\Rightarrow A=2^{2003}.\left(9+1005\right)\)
\(\Rightarrow A=2^{2003}.1024\)
\(\Rightarrow A=2^{2003}.2^{10}\)
\(\Rightarrow A=2^{2013}\)
Vì \(2^{2013}-1< 2^{2013}\) nên A > B
Vậy A > B
\(\dfrac{x-1016}{1001}+\dfrac{x-13}{1002}+\dfrac{x+992}{1003}=\dfrac{x+995}{1004}+\dfrac{x-7}{1005}+1\)
<=>\(\dfrac{x-1016}{1001}-1+\dfrac{x-13}{1002}-2+\dfrac{x+992}{1003}-3=\dfrac{x+995}{1004}-3+\dfrac{x-7}{1005}-2\)
<=>\(\dfrac{x-2017}{1001}+\dfrac{x-2017}{1002}+\dfrac{x-2017}{1003}=\dfrac{x-2017}{1004}+\dfrac{x-2017}{1005}\)
<=>\(\left(x-2017\right)\left(\dfrac{1}{1001}+\dfrac{1}{1002}+\dfrac{1}{1003}-\dfrac{1}{1004}-\dfrac{1}{1005}\right)=0\)
vì 1/1001+1/1002+1/1003-1/1004-1/1005 khác 0 nên x-2017=0<=>x=2017
vậy..........
So sánh A=\(\dfrac{1}{100}+\dfrac{1}{101}+\dfrac{1}{102}+..+\dfrac{1}{2021}\)và B=20. So sánh A và B
\(10A=\dfrac{10^{16}+10}{10^{16}+1}=1+\dfrac{9}{10^{16}+1}\)
\(10B=\dfrac{10^{17}+10}{10^{17}+1}=1+\dfrac{9}{10^{17}+1}\)
Vì \(10^{16}+1< 10^{17}+1\)
nên \(\dfrac{9}{10^{16}+1}>\dfrac{9}{10^{17}+1}\)
=>\(1+\dfrac{9}{10^{16}+1}>1+\dfrac{9}{10^{17}+1}\)
=>10A>10B
=>A>B