Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(10A=\frac{10\left(10^{29}+10^{10}\right)}{10^{30}+10^{10}}=\frac{10^{30}+10^{11}}{10^{30}+10^{10}}=1+\frac{10^{11}-10^{10}}{10^{30}+10^{10}}\)
\(10B=\frac{10\left(10^{30}+10^{10}\right)}{10^{31}+10^{10}}=\frac{10^{31}+10^{11}}{10^{31}+10^{10}}=1+\frac{10^{11}-10^{10}}{10^{31}+10^{10}}\)
\(10^{30}+10^{10}< 10^{31}+10^{10}\Rightarrow\frac{10^{11}-10^{10}}{10^{30}+10^{10}}>\frac{10^{11}-10^{10}}{10^{31}+10^{10}}\)
\(\Rightarrow10A=1+\frac{10^{11}-10^{10}}{10^{30}+10^{10}}>10B=1+\frac{10^{11}-10^{10}}{10^{31}+10^{10}}\)
\(\Rightarrow A>B\)
Ta có : A= \(\frac{10^{11}-1}{10^{12}-1}\Rightarrow10A=\frac{10\left(10^{11}-1\right)}{10^{12}-1}\)\(=\frac{10^{12}-10}{10^{12}-1}=\frac{10^{12}-1-9}{10^{12}-1}=1-\frac{9}{10^{12}-1}\)
B= \(\frac{10^{10}+1}{10^{11}+1}\Rightarrow10B=\frac{10\left(10^{10}+1\right)}{10^{11}+1}=\frac{10^{11}+10}{10^{11}+1}=\frac{10^{11}+1+9}{10^{11}+1}=1+\frac{9}{10^{11}+1}\)
Vì \(1-\frac{9}{10^{12}-1}\)<1 còn\(1+\frac{9}{10^{11}+1}\)>1 nên 10A<10B
Vậy A<B
ta có : \(\frac{10^9+2}{10^9-1}=\frac{10^9}{10^9-3}\)
\(\Leftrightarrow\left(10^9+2\right)\left(10^9-3\right)=\left(10^9-1\right)10^9\)
\(\Leftrightarrow10^{18}-10^9.3+2.10^9-6=10^{18}-10^9\)
\(\Rightarrow10^{18}-10^9.3+2.10^9-6=10^{18}-\left(10^9.3-2.10^9+6\right)\)
\(=10^{18}-\left(10^9+6\right)\)
vì \(-10^9>-\left(10^9+6\right)\Rightarrow10^{18}-10^9>10^{18}-\left(10^9+6\right)\)
\(\Rightarrow A>B\)
Ta có: A=\(\frac{10^9+2}{10^9-1}=\frac{10^9-1+3}{10^9-1}=1+\frac{3}{10^9-1}\)
B=\(\frac{10^9}{10^9-3}=\frac{10^9-3+3}{10^9-3}=1+\frac{3}{10^9-3}\)
Mà \(\frac{3}{10^9-1}< \frac{3}{10^9-3}\Rightarrow1+\frac{3}{10^9-1}< 1+\frac{3}{10^9-3}\Rightarrow A< B\)
Vậy A<B
Ta có :\(A=\frac{10^{10}+1}{10^{10}-1}\)
\(A=\frac{10^{10}-1+2}{10^{10}-1}\)
\(A=\frac{10^{10}-1}{10^{10}-1}+\frac{2}{10^{10}-1}\)
\(A=1+\frac{2}{10^{10}-1}\)
\(B=\frac{10^{10}-1}{10^{10}-3}\)
\(B=\frac{10^{10}-3+2}{10^{10}-3}\)
\(B=\frac{10^{10}-3}{10^{10}-3}+\frac{2}{10^{10}-3}\)
\(B=1+\frac{2}{10^{10}-3}\)
Vì \(\frac{2}{10^{10}-1}< \frac{2}{10^{10}-3}\)
\(\Rightarrow1+\frac{2}{10^{10}-1}< 1+\frac{2}{10^{10}-3}\)
\(\Rightarrow A< B\)
Vậy A<B
a) Với a>b thì => (a+n).b=ab+bn>ab+an=a(b+n)=>(a+n).b>a.(b+n)
=> a+nb+n >ab
Với b>a thì chứng minh tương tự ta được a+nb+n <ab
Với a=b thì chứng minh tương tự ta được a+nb+n =ab
\(B=\frac{10^{10}+1}{10^{11}+1}=\frac{10^{11}+10}{10^{12}+10}=\frac{10^{11}-1+11}{10^{12}-1+11}< \frac{10^{11}-1}{10^{12}-1}=A\)=> A>B
a) Ta có : 10A = \(\frac{10\left(10^{2004}+1\right)}{10^{2005}+1}=\frac{10^{2005}+10}{10^{2005}+1}=1+\frac{9}{10^{2005}+1}\)
Lại có 10B = \(\frac{10\left(10^{2005}+1\right)}{10^{2006}+1}=\frac{10^{2006}+10}{10^{2006}+1}=1+\frac{9}{10^{2006}+1}\)
Vì \(\frac{9}{10^{2005}+1}>\frac{9}{10^{2006}+1}\Rightarrow1+\frac{9}{10^{2005}+1}>1+\frac{9}{10^{2006}+1}\)
=> 10A > 10B
=> A > B
b) Ta có A = \(\frac{20^{10}+1}{20^{10}-1}=\frac{20^{10}-1+2}{20^{10}-1}=1+\frac{2}{20^{10}-1}\)
Lại có B = \(\frac{20^{10}-1}{20^{10}-3}=\frac{20^{10}-3+2}{20^{10}-3}=1+\frac{2}{20^{10}-3}\)
Vì \(\frac{2}{20^{10}-1}< \frac{2}{20^{10}-3}\Rightarrow1+\frac{2}{20^{10}-1}< 1-\frac{2}{20^{10}-3}\)
=> A < B
\(\Rightarrow\frac{A}{10}=\frac{10^{1992}+1}{10^{1992}+10}=\frac{10^{1992}+10-9}{10^{1992}+10}=1-\frac{9}{10\left(10^{1991}+1\right)}\)
\(\Rightarrow\frac{B}{10}=\frac{10^{1993}+1}{10^{1993}+10}=\frac{10^{1993}+10-9}{10^{1993}+10}=1-\frac{9}{10\left(10^{1992}+1\right)}\)
Vì \(1-\frac{9}{10\left(10^{1991}+1\right)}< 1-\frac{9}{10\left(10^{1992}+1\right)}\Rightarrow A< B\)