K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

bài này là bài mấy vậy

24 tháng 2 2020

\(10A=\frac{10\left(10^{29}+10^{10}\right)}{10^{30}+10^{10}}=\frac{10^{30}+10^{11}}{10^{30}+10^{10}}=1+\frac{10^{11}-10^{10}}{10^{30}+10^{10}}\)

\(10B=\frac{10\left(10^{30}+10^{10}\right)}{10^{31}+10^{10}}=\frac{10^{31}+10^{11}}{10^{31}+10^{10}}=1+\frac{10^{11}-10^{10}}{10^{31}+10^{10}}\)

\(10^{30}+10^{10}< 10^{31}+10^{10}\Rightarrow\frac{10^{11}-10^{10}}{10^{30}+10^{10}}>\frac{10^{11}-10^{10}}{10^{31}+10^{10}}\)

\(\Rightarrow10A=1+\frac{10^{11}-10^{10}}{10^{30}+10^{10}}>10B=1+\frac{10^{11}-10^{10}}{10^{31}+10^{10}}\)

\(\Rightarrow A>B\)

19 tháng 1 2016

Ta có : A= \(\frac{10^{11}-1}{10^{12}-1}\Rightarrow10A=\frac{10\left(10^{11}-1\right)}{10^{12}-1}\)\(=\frac{10^{12}-10}{10^{12}-1}=\frac{10^{12}-1-9}{10^{12}-1}=1-\frac{9}{10^{12}-1}\)

B= \(\frac{10^{10}+1}{10^{11}+1}\Rightarrow10B=\frac{10\left(10^{10}+1\right)}{10^{11}+1}=\frac{10^{11}+10}{10^{11}+1}=\frac{10^{11}+1+9}{10^{11}+1}=1+\frac{9}{10^{11}+1}\)

Vì \(1-\frac{9}{10^{12}-1}\)<1         còn\(1+\frac{9}{10^{11}+1}\)>1  nên 10A<10B 

Vậy A<B

19 tháng 1 2016

mk lộn tí nha A<B đó

16 tháng 3 2017

ta có : \(\frac{10^9+2}{10^9-1}=\frac{10^9}{10^9-3}\)

\(\Leftrightarrow\left(10^9+2\right)\left(10^9-3\right)=\left(10^9-1\right)10^9\)

\(\Leftrightarrow10^{18}-10^9.3+2.10^9-6=10^{18}-10^9\)

\(\Rightarrow10^{18}-10^9.3+2.10^9-6=10^{18}-\left(10^9.3-2.10^9+6\right)\)

                                                        \(=10^{18}-\left(10^9+6\right)\)

vì \(-10^9>-\left(10^9+6\right)\Rightarrow10^{18}-10^9>10^{18}-\left(10^9+6\right)\)

\(\Rightarrow A>B\)

                                                        

16 tháng 3 2017

Ta có: A=\(\frac{10^9+2}{10^9-1}=\frac{10^9-1+3}{10^9-1}=1+\frac{3}{10^9-1}\)

         B=\(\frac{10^9}{10^9-3}=\frac{10^9-3+3}{10^9-3}=1+\frac{3}{10^9-3}\)

Mà \(\frac{3}{10^9-1}< \frac{3}{10^9-3}\Rightarrow1+\frac{3}{10^9-1}< 1+\frac{3}{10^9-3}\Rightarrow A< B\)      

Vậy A<B

30 tháng 3 2017

Ta có :\(A=\frac{10^{10}+1}{10^{10}-1}\)

      \(A=\frac{10^{10}-1+2}{10^{10}-1}\)

  \(A=\frac{10^{10}-1}{10^{10}-1}+\frac{2}{10^{10}-1}\)

\(A=1+\frac{2}{10^{10}-1}\)

\(B=\frac{10^{10}-1}{10^{10}-3}\)

\(B=\frac{10^{10}-3+2}{10^{10}-3}\)

\(B=\frac{10^{10}-3}{10^{10}-3}+\frac{2}{10^{10}-3}\)

\(B=1+\frac{2}{10^{10}-3}\)

Vì \(\frac{2}{10^{10}-1}< \frac{2}{10^{10}-3}\)

\(\Rightarrow1+\frac{2}{10^{10}-1}< 1+\frac{2}{10^{10}-3}\)

\(\Rightarrow A< B\)

Vậy A<B

28 tháng 11 2017

a) Với a>b thì => (a+n).b=ab+bn>ab+an=a(b+n)=>(a+n).b>a.(b+n)

=> a+nb+n >ab 

Với b>a thì chứng minh tương tự ta được a+nb+n <ab 

Với a=b thì chứng minh tương tự ta được a+nb+n =ab

28 tháng 11 2017

\(B=\frac{10^{10}+1}{10^{11}+1}=\frac{10^{11}+10}{10^{12}+10}=\frac{10^{11}-1+11}{10^{12}-1+11}< \frac{10^{11}-1}{10^{12}-1}=A\)=> A>B

24 tháng 7 2020

a) Ta có : 10A = \(\frac{10\left(10^{2004}+1\right)}{10^{2005}+1}=\frac{10^{2005}+10}{10^{2005}+1}=1+\frac{9}{10^{2005}+1}\)

Lại có 10B = \(\frac{10\left(10^{2005}+1\right)}{10^{2006}+1}=\frac{10^{2006}+10}{10^{2006}+1}=1+\frac{9}{10^{2006}+1}\)

Vì \(\frac{9}{10^{2005}+1}>\frac{9}{10^{2006}+1}\Rightarrow1+\frac{9}{10^{2005}+1}>1+\frac{9}{10^{2006}+1}\)

=> 10A > 10B 

=> A > B

b) Ta có A = \(\frac{20^{10}+1}{20^{10}-1}=\frac{20^{10}-1+2}{20^{10}-1}=1+\frac{2}{20^{10}-1}\)

Lại có B = \(\frac{20^{10}-1}{20^{10}-3}=\frac{20^{10}-3+2}{20^{10}-3}=1+\frac{2}{20^{10}-3}\)

Vì \(\frac{2}{20^{10}-1}< \frac{2}{20^{10}-3}\Rightarrow1+\frac{2}{20^{10}-1}< 1-\frac{2}{20^{10}-3}\) 

=> A < B

24 tháng 7 2020

Cảm ơn bạn rất nhiều nha

27 tháng 11 2016

\(\Rightarrow\frac{A}{10}=\frac{10^{1992}+1}{10^{1992}+10}=\frac{10^{1992}+10-9}{10^{1992}+10}=1-\frac{9}{10\left(10^{1991}+1\right)}\)

\(\Rightarrow\frac{B}{10}=\frac{10^{1993}+1}{10^{1993}+10}=\frac{10^{1993}+10-9}{10^{1993}+10}=1-\frac{9}{10\left(10^{1992}+1\right)}\)

Vì \(1-\frac{9}{10\left(10^{1991}+1\right)}< 1-\frac{9}{10\left(10^{1992}+1\right)}\Rightarrow A< B\)

27 tháng 11 2016

So sánh tử và mẫu của 2 phân số với nhau.