K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 5 2016

nhân 15 với A và B rồi so sánh là xong

7 tháng 5 2016

A = 152015+1/152016+1 < 152015+1+14/152016+1+14

   = 152015+15/152016+15

   = 15.(152014+1)/15.(152015+1)

   = 152014+1/152015+1 = B

=> A<B

13 tháng 4 2018

( ghi lại đề ) 

Ta có : 

\(15A=\frac{15^{2016}+15}{15^{2016}+1}=\frac{15^{2016}+1+14}{15^{2016}+1}=\frac{15^{2016}+1}{15^{2016}+1}+\frac{14}{15^{2016}+1}=1+\frac{14}{15^{2016}+1}\)

\(15B=\frac{15^{2015}+15}{15^{2015}+1}=\frac{15^{2015}+1+14}{15^{2015}+1}=\frac{15^{2015}+1}{15^{2015}+1}+\frac{14}{15^{2015}+1}=1+\frac{14}{15^{2015}+1}\)

Vì \(\frac{14}{15^{2016}+1}< \frac{14}{15^{2015}+1}\) nên \(1+\frac{14}{15^{2016}+1}< 1+\frac{14}{15^{2015}+1}\) hay \(15A< 15B\)

\(\Rightarrow\)\(A< B\)

Vậy \(A< B\)

Chúc bạn học tốt ~ 

13 tháng 4 2018

nhan 2 ve voi 15 

13 tháng 2 2018

A = \(\frac{2015^{2016}+1}{2015^{2015}+1}=\frac{2015^{2015}+1}{2015^{2015}+1}+\frac{2015}{2015^{2015}+1}=1+\frac{2015}{2015^{2015}+1}\)

B = \(\frac{2014^{2015}+1}{2014^{2014}+1}=\frac{2014^{2014}+1}{2014^{2014}+1}+\frac{2014}{2014^{2014}+1}=1+\frac{2014}{2014^{2014}+1}\)

Rồi bạn tự so sánh nha

21 tháng 5 2016

\(A=\frac{-7}{2016^{2015}}+\frac{-15}{2016^{2016}}=\frac{-7.2016}{2016^{2016}}+\frac{-15}{2016^{2016}}=\frac{-14127}{2016^{2016}}\)

\(B=\frac{-15}{2016^{2015}}+\frac{-7}{2016^{2016}}=\frac{-15.2016}{2016^{2016}}+\frac{-7}{2016^{2016}}=\frac{-30247}{2016^{2016}}\)

Vậy : A>B

15 tháng 7 2017

a/ \(8^5=\left(2^3\right)^5=2^{15}\)và \(32^3=\left(2^5\right)^3=2^{15}\Rightarrow8^5=32^3\)

b/ \(27^4=\left(3^3\right)^4=3^{12}\) và \(9^6=\left(3^2\right)^6=3^{12}\Rightarrow27^4=9^6\)

c/ \(23^{17}-23^{16}=23^{16}\left(23-1\right)=22.23^{16}\)

\(23^{16}-23^{15}=23^{15}\left(23-1\right)=22.23^{15}\)

\(\Rightarrow22.23^{16}>22.23^{15}\Rightarrow23^{17}-23^{16}>23^{16}-23^{15}\)

d/ \(\frac{3^{2015}+1}{3^{2016}}=\frac{1}{3}+\frac{1}{3^{2016}}\) và \(\frac{3^{2016}+1}{3^{2017}+1}=\frac{3^{2017}+3}{3\left(3^{2017}+1\right)}=\frac{3^{2017}+1+2}{3\left(3^{2017}+1\right)}=\frac{1}{3}+\frac{2}{3}.\frac{1}{3^{2017}+1}\)

\(\frac{1}{3^{2016}}>\frac{1}{3^{2017}}>\frac{1}{3^{2017}+1}>\frac{2}{3}.\frac{1}{3^{2017}+1}\)

\(\Rightarrow\frac{3^{2015}+1}{3^{2016}}>\frac{3^{2016}+1}{3^{2017}+1}\)

Câu cuối phân tích tương tự

28 tháng 3 2018

\(A=\frac{10^{2015}-1}{10^{2016}^{ }-1}=\frac{10^{2015}}{10^{2016}}=\frac{1}{1},B=\frac{10^{2014}-1}{10^{2015}-1}=\frac{10^{2014}}{10^{2015}}=\frac{1}{1}A=B\Rightarrow\)

25 tháng 8 2015

biến đổi ra là đc nhưng dài lắm!!!!

23 tháng 4 2018

Mấy bài dạng này biết cách làm là oke 

Ta có : 

\(A=\frac{\frac{2016}{1}+\frac{2015}{2}+\frac{2014}{3}+...+\frac{2}{2015}+\frac{1}{2016}}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2016}+\frac{1}{2017}}\)

\(A=\frac{\left(2016-1-1-...-1\right)+\left(\frac{2015}{2}+1\right)+\left(\frac{2014}{3}+1\right)+...+\left(\frac{2}{2015}+1\right)+\left(\frac{1}{2016}+1\right)}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2016}+\frac{1}{2017}}\)

\(A=\frac{\frac{2017}{2017}+\frac{2017}{2}+\frac{2017}{3}+...+\frac{2017}{2015}+\frac{2017}{2016}}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2016}+\frac{1}{2017}}\)

\(A=\frac{2017\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2016}+\frac{1}{2017}\right)}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2016}+\frac{1}{2017}}\)

\(A=2017\)

Vậy \(A=2017\)

Chúc bạn học tốt ~ 

23 tháng 4 2018

\(A=\frac{\frac{2016}{1}+\frac{2015}{2}+...+\frac{2}{2015}+\frac{1}{2016}}{\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2017}}\)

\(A=\frac{2016+\frac{2015}{2}+...+\frac{2}{2015}+\frac{1}{2016}}{\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2017}}\)

\(A=\frac{\left(\frac{2015}{2}+1\right)+\left(\frac{2014}{3}+1\right)+...+\left(\frac{2}{2015}+1\right)+\left(\frac{1}{2016}+1\right)+\frac{2017}{2017}}{\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2017}}\)

(số 2016 tách ra làm 2016 số 1 rồi cộng vào từng phân số, còn dư 1 số viết thành 2017/2017 nghe bạn!!! :)))

\(A=\frac{\frac{2017}{2}+\frac{2017}{3}+...+\frac{2017}{2015}+\frac{2017}{2016}+\frac{2017}{2017}}{\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2017}}\)

\(A=\frac{2017\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2015}+\frac{1}{2016}+\frac{1}{2017}\right)}{\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2017}}\)

\(A=2017\)

9 tháng 3 2018

\(a)\) Ta có : 

\(\overline{34x5y}\) chia hết cho 4 và 9 

* Chia hết cho 4 : số có 2 chữ số tận cùng chia hết cho 4 thì chia hết cho 4 

\(\Rightarrow\)\(\overline{5y}=52\) hoặc \(\overline{5y}=56\)

Chia hết cho 9 : số có tổng các chữ số chia hết cho 9 thì chia hết cho 9 

\(\Rightarrow\)\(3+4+x+5+2\) chia hết cho 9 \(\Rightarrow\)\(14+x\) chia hết cho 9 \(\Rightarrow\)\(x=4\)

Hoặc : 

\(\Rightarrow\)\(3+4+x+5+6\) chia hết cho 9 \(\Rightarrow\)\(18+x\) chia hết cho 9 \(\Rightarrow\)\(x=0\) hoặc \(x=9\)

Vậy \(\left(x,y\right)=\left\{\left(4;2\right),\left(0;6\right),\left(9;6\right)\right\}\)

Chúc bạn học tốt ~