K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

ta có:

\(a=\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{100^2}\)

\(a=\frac{1}{4}+\frac{1}{9}+...+\frac{1}{9801}+\frac{1}{10000}\)

\(a=\left(\frac{1}{4}+\frac{1}{10000}\right)+\left(\frac{1}{9}+\frac{1}{9801}\right).\left(10000-4:\left(9-4\right)\right)\)

a=\(\frac{1}{10004}.498=\frac{249}{5002}\)

vì:\(\frac{249}{5002}< \frac{3}{4}=>a< \frac{3}{4}\)

8 tháng 5 2021

fan bé sans à

8 tháng 5 2021

wuttttt

30 tháng 10 2019

a)  18 2 < 10 3

b)  3 2 + 4 2 < ( 3 + 4 ) 2

c)  100 2 + 30 2 < ( 100 + 30 ) 2

d)  a 2 + b 2 > ( a - b ) 2 với a ∈   N * ;   b ∈   N * .  

10 tháng 10 2023

loading...  loading...  loading...  

9 tháng 1

Bài 1

a) S = 1 + 2 + 2² + 2³ + ... + 2²⁰²³

2S = 2 + 2² + 2³ + 2⁴ + ... + 2²⁰²⁴

S = 2S - S = (2 + 2² + 2³ + ... + 2²⁰²⁴) - (1 + 2 + 2² + 2³)

= 2²⁰²⁴ - 1

b) B = 2²⁰²⁴

B - 1 = 2²⁰²⁴ - 1 = S

B = S + 1

Vậy B > S

NV
9 tháng 1

a,

\(S=1+2+2^2+...+2^{2023}\)

\(2S=2+2^2+2^3+...+2^{2024}\)

\(\Rightarrow S=2^{2024}-1\)

b.

Do \(2^{2024}-1< 2^{2024}\)

\(\Rightarrow S< B\)

2.

\(H=3+3^2+...+3^{2022}\)

\(\Rightarrow3H=3^2+3^3+...+3^{2023}\)

\(\Rightarrow3H-H=3^{2023}-3\)

\(\Rightarrow2H=3^{2023}-3\)

\(\Rightarrow H=\dfrac{3^{2023}-3}{2}\)

3 tháng 12 2023

\(32^{15}=\left(2^5\right)^{15}=2^{5.15}=2^{75}\)

\(4^{39}=\left(2^2\right)^{39}=2^{2.39}=2^{78}\)

Do \(2^{78}>2^{75}\)

\(\Rightarrow4^{39}>32^{15}\)

\(\Rightarrow1+4+4^2+...+4^{39}>32^{15}\)

\(\Rightarrow3\left(1+4+4^2+...+4^{39}\right)>32^{15}\)

Vậy \(A>B\)

3 tháng 12 2023

mọi ng giúp mik với