Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/ Ta có
\(200-\left(3+\frac{2}{3}+\frac{2}{4}+...+\frac{2}{100}\right)\)
\(=1+2\left(1-\frac{1}{3}\right)+2\left(1-\frac{1}{4}\right)+...+2\left(1-\frac{1}{100}\right)\)
\(=1+2\left(\frac{2}{3}+\frac{3}{4}+...+\frac{99}{100}\right)\)
\(=2\left(\frac{1}{2}+\frac{2}{3}+...+\frac{99}{100}\right)\)
Thế lại bài toán ta được:
\(\frac{200-\left(3+\frac{2}{3}+\frac{2}{4}+...+\frac{2}{100}\right)}{\frac{1}{2}+\frac{2}{3}+...+\frac{99}{100}}\)
\(=\frac{2\left(\frac{1}{2}+\frac{2}{3}+...+\frac{99}{100}\right)}{\frac{1}{2}+\frac{2}{3}+...+\frac{99}{100}}=2\)
b/ Ta có:
A - B\(=\frac{-21}{10^{2016}}+\frac{12}{10^{2016}}+\frac{21}{10^{2017}}-\frac{12}{10^{2017}}\)
\(=\frac{9}{10^{2017}}-\frac{9}{10^{2016}}< 0\)
Vậy A < B
Quy đồng: \(\frac{n}{n+1}\)= \(\frac{n\left(n+2\right)}{\left(n+1\right)\left(n+2\right)}\)=\(\frac{n^2.2n}{\left(n+1\right)\left(n+2\right)}\)
\(\frac{n+1}{n+2}\)= \(\frac{\left(n+1\right)\left(n+1\right)}{\left(n+1\right)\left(n+2\right)}\)= \(\frac{n^2+2n+1}{\left(n+1\right)\left(n+2\right)}\)
Vì n2+2n+1 < n2.2n+1 nên...
Vậy...
Ko chắc nha
Nghe nó ko có lý kiểu j j ý
Ta có : \(A=\frac{10^{2016}+1}{10^{2017}+1}\)
Suy ra \(10A=\frac{10^{2017}+10}{10^{2017}+1}\)
Suy ra \(10A=1+\frac{9}{10^{2017}+1}\)
Ta lại có : \(B=\frac{10^{2017}+1}{10^{2018}+1}\)
Suy ra : \(10B=\frac{10^{2018}+10}{10^{2018}+1}\)
Suy ra : \(10B=1+\frac{9}{10^{2018}+1}\)
Vì \(\frac{9}{10^{2017}+1}>\frac{9}{10^{2018}+1}\)
Nên \(1+\frac{9}{10^{2017}+1}>1+\frac{9}{10^{2018}+1}\)
Suy ra \(10A>10B\)
Suy ra \(A>B\)
dễ mà bạn
A=10x10+10/ 10x10x10+10
A=110/1010
a=11/101
b=10x10-10/10x10x10-10
b=90/990
b=11/110
vậy a=11/101
b=90/990
bn tự so sánh nhé ^-^
mik mỏi tay quá ko đánh đc nữa bọn mik bằng tuổi đó
câu này mik học trên lớp rùi