Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)
Ta có : A = 275 = (33)5 = 315
B = 2433 = (35)3 = 315
Vì 315 = 315 => A = B
b )
Ta có : A = 2300 = (23)100 = 8100
B = 3200 = (32)100 = 9100
Vì 8100 < 9100 => A<B
a) \(2^x=16=2^4\Rightarrow x=4\)
b) \(x^3=27=3^3\Rightarrow x=3\)
c) \(x^{50}=x\Rightarrow x\left(x^{49}-1\right)=0\Rightarrow x=0\) hay \(x=1\)
d) \(\left(x-2\right)^2=16=4^2\Rightarrow x-2=4\) hay \(x-2=-4\)
\(\Rightarrow x=6\) hay \(x=-2\)
a) \(2^{300}=2^{3.100}=8^{100}\)
\(3^{200}=3^{2.100}=9^{100}\)
vì \(8^{100}< 9^{100}\)
\(\Rightarrow2^{300}< 3^{200}\)
b) \(3^{500}=3^{5.100}=243^{100}\)
\(7^{300}=7^{3.100}=343^{100}\)
vì \(243^{100}< 343^{100}\)
\(\Rightarrow3^{500}< 7^{300}\)
2010^2 và 2009.2011
<=> (2009+1).2010 và 2009.(2010+1)
<=> 2009.2010+2010 > 2009.2010+2009
b) phân tích 2^16 - 1 ta được
2^16-1=(2^8+1)(2^4+1)(2^2+1)(2^2-1)=A
Vậy B>A
tick mik đi rùi mik làm típ câu b cho !!!
a)
Ta có :A=275=27.27.27.27.27 Ta có :B=2433=243.243.243
=(3.3.3).(3.3.3)...(3.3.3)(có 5 nhóm) =(3.3.3.3.3).(3.3.3.3.3)...(3.3.3.3.3)(có 3 nhóm)
=3.3.3.3.3...3(15 thừa số 3) =3.3.3.3.3...3.3(có 15 thừa số 3)
=315 =315
Mà315=315
Nên 275=2433
=>A=B
b)Ta có:A=85=8.8.8.8.8 B=27
=(2.2.2).(2.2.2)...(2.2.2)(có 5 nhóm)
=2.2.2.2.2.2..2(có 15 thừ số 2)
Mà 215>27
Nên 85>27
=>A>B
c)(bạn tự tìm người giải ,mình bó)
d)A=1+2+22+23+24+..+21999 B=22000
2.A=2.(1+2+22+23+...+21999)
2.A=2+22+23+24+...+21999+22000
Ta có:2.A-A=(2+22+23+24+...+22000) - (1+2+22+23+...+21999)
A=22000-1
Mà 22000-1<22000
Nên A<B
Câu2:
A=4+42+43+44+...+460
4.A=4.(4+42+43+...+460)
4.A=42+43+44+...+460+461
4.A-4=(42+43+44+...+461)-(4+42+43+...+460)
A=\(\frac{4^{61}-4}{3}\)
bài 3 thì mình quên cách làm rồi để mai mình xem vở chỉ cho
Lời giải:
a) Xét hiệu \(\frac{a+n}{b+n}-\frac{a}{b}=\frac{(a+n).b-a(b+n)}{b(b+n)}=\frac{n(b-a)}{b(b+n)}\)
Nếu $b>a$ thì $\frac{a+n}{b+n}-\frac{a}{b}>0\Rightarrow \frac{a+n}{b+n}>\frac{a}{b}$
Nếu $b<a$ thì $\frac{a+n}{b+n}-\frac{a}{b}<0\Rightarrow \frac{a+n}{b+n}<\frac{a}{b}$
Nếu $b=a$ thì $\frac{a+n}{b+n}-\frac{a}{b}=0\Rightarrow \frac{a+n}{b+n}=\frac{a}{b}$
b) Rõ ràng $10^{11}-1< 10^{12}-1$.
Đặt $10^{11}-1=a; 10^{12}-1=b; 11=n$ thì: $a< b$; $A=\frac{a}{b}$ và $B=\frac{10^{11}+10}{10^{12}+10}=\frac{a+n}{b+n}$
Áp dụng kết quả phần a:
$b>a\Rightarrow \frac{a+n}{b+n}>\frac{a}{b}$ hay $B>A$
a) Ta có :
\(\left(27\right)^5=\left(3^3\right)^5=3^{15}\)
\(\left(243\right)^3=\left(3^5\right)^3=3^{15}\)
Vậy 275 = 2433
b) Ta có :
\(2^{300}=2^{3.100}=8^{100}\)
\(3^{200}=3^{2.100}=9^{100}\)
Vì 8100 < 9100 nên 2300 < 3200