Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
sorry nghe h tớ gửi quá 100 tin nhắn nên nó ko cho gửi
Bài 1
a)2711>818
b)6255>1257
c)536<1124
d)32n>23n
Bài 2
a)523<6.522
b)7.213>216
c)2115<275.498
a) 536 và 1124
Ta có: 536= (53)12=12512 (1)
1124=(112)12=12112 (2)
Từ (1) và (2) => 536>1124
tương tự.....
Đáp án là :
câu 20 :625 < 1257
câu 21 :536 > 1124
câu 22 :32n < 23n
câu 23 :523 < 6.522
câu 24 :1124 <19920
câu 25 :399 > 112
a, Ta có : \(8>7\)
\(\Rightarrow2^{13}.8=2^{16}>2^{13}.7\)
b, Ta có : \(199^{20}< 200^{20}=2^{60}.5^{40}\)
Mà \(2003^{15}>2000^{15}=2^{60}.2^{45}\)
Thấy : \(45>40\)
\(\Rightarrow2000^{15}>200^{20}\)
\(\Rightarrow2003^{15}>199^{20}\)
c, Ta có : \(\left\{{}\begin{matrix}202^{303}=\left(2.101\right)^{3.101}=\left(8.101^3\right)^{101}\\303^{202}=\left(3.101\right)^{2.101}=\left(9.101^2\right)^{101}\end{matrix}\right.\)
Mà \(8.101^3>9.101^2\)
\(\Rightarrow202^{303}>303^{202}\)
a) Ta có: \(2^{16}=2^{13}\cdot8\)
mà \(7< 8\)
nên \(7\cdot2^{13}< 2^{16}\)
b) \(199^{20}=1568239201^5\)
\(2003^{15}=8036054027^5\)
mà \(1568239201< 8036054027\)
nên \(199^{20}< 2003^{15}\)
c) Ta có: \(202^{303}=\left(202^3\right)^{101}\)
\(303^{202}=\left(303^2\right)^{101}\)
mà \(202^3>303^2\)
nên \(202^{303}>303^{202}\)
\(5^{36}=\left(5^3\right)^{12}=125^{12}\\ 11^{24}=\left(11^2\right)^{12}=121^{12}\)
Nhận thấy : \(125^{12}>121^{12}=>5^{36}>11^{24}\)
Ta có:
536 = 512 (53)12 = 12512; 1124 = 112.12 = (112)12 = 12112
Mà 12512 > 12112 => 536 > 12112
a, Ta có 10 30 = 10 3 10 = 1000 10
2 100 = 2 10 10 = 1024 10
Vì 1000<1024 nên 1000 10 < 1024 10
Vậy 10 30 < 2 100
b, Ta có: 333 444 = 333 4 111 = 3 . 111 4 111 = 81 . 111 4 111
444 333 = 444 3 111 = 4 . 111 3 111 = 64 . 111 3 111
Vì 81 > 64 và 111 4 > 111 3 nên 81 . 111 4 111 > 64 . 111 3 111
Vậy 333 444 > 444 333
c, Ta có: 21 5 = 3 . 7 15 = 3 15 . 7 15
27 5 . 49 8 = 3 3 5 . 7 2 8 = 3 15 . 7 16
Vì 7 15 < 7 16 nên 3 15 . 7 15 < 3 15 . 7 16
Vậy 21 5 < 27 5 . 49 8
d, Ta có: 3 2 n = 3 2 n = 9 n
2 3 n = 2 3 n = 8 n
Vì 8 < 9 nên 8 n < 9 n n ∈ N *
Vậy 3 2 n > 2 3 n
e, Ta có: 2017.2018 = (2018–1).(2018+1) = 2018.2018+2018.1–1.2018–1.1
= 2018 2 - 1
Vì 2018 2 - 1 < 2018 2 nên 2017.2018< 2018 2
f, Ta có: 100 - 99 2000 = 1 2000 = 1
100 + 99 0 = 199 0 = 1
Vậy 100 - 99 2000 = 100 + 99 0
g, Ta có: 2009 10 + 2009 9 = 2009 9 . 2009 + 1
= 2010 . 2009 9
2010 10 = 2010 . 2010 9
Vì 2009 9 < 2010 9 nên 2010 . 2009 9 < 2010 . 2010 9
Vậy 2009 10 + 2009 9 < 2010 10
a) Ta có:
\(199^{20}=\left[\left(199\right)^4\right]^5=1568239201^5\)
\(2003^{15}=\left[\left(2003\right)^3\right]^5=8036054027^5\)
Mà: \(8036054027>1568239201\)
\(\Rightarrow1568239201^5< 8036054027^5\)
\(\Rightarrow199^{20}< 2003^{15}\)
b) Xem lại đề
\(27^{11}>81^8;625^5< 125^7;5^{36}>11^{24};5^{28}< 26^{14}\)
Hok tốt
a)536=(53)12=12512;1124=(112)12=12112 mà 12512>12112
suy ra 536>1124
b)19920<20020;200015<200315(3)
20020=(2004)5(1)
200015=(20003)5(2)
2004=2003.200
20003=(200.10)3=2003.1000>2003.200=2004
Từ (1) và (2) suy ra 20020<200015
Từ (3) suy ra 19920<200315
c)32n=(32)n=9n;23n=(23)n=8n<9n=32n