Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(3^{21}\)và \(2^{31}\)
\(3^{21}\)=\(3.3^{20}\)=\(3.9^{10}\)
\(2^{31}=2.2^{30}=2.8^{10}\)
Vì \(3.9^{10}\)>\(2.8^{10}\)\(\Rightarrow3^{21}>2^{31}\)
b)\(2^{300}\)và \(3^{200}\)
\(2^{300}=2^{3.100}=\left(2^3\right)^{100}=8^{100}\)
\(3^{200}=3^{2.100}=\left(3^2\right)^{100}=9^{100}\)
Vì \(8^{100}< 9^{100}\Rightarrow2^{300}< 3^{200}\)
c)\(32^9\)và\(18^{13}\)
\(32^9=2^{5.9}=2^{45}\)
\(18^{13}>16^{13}=2^{4.13}=2^{52}\)
\(\Rightarrow2^{45}< 2^{52}< 18^{13}\)\(\Rightarrow2^{45}< 18^{13}\Rightarrow32^9< 18^{13}\)
a) ta có: 321 = 3.320 = 3.910
231 = 2.230 = 2.810
vì 2.810 < 3.910 => 231 < 321
b) ta có: 2300 = (23)100 = 8100
3200 = (32)100 = 9100
vì 8100 < 9100 => 2300 < 3200
c) ta có: 329 = (25)9 = 245
1813 > 1613 = (24)13 = 252
ta thấy 245 < 252 < 1813
Nên 329 < 1813
a) Ta có: 2300=(23)100=8100
3200=(32)100=9100
Vì 8<9 nên 8100<9100
Vậy 2300<3200
b) Ta có: 2333=(23)111=8111
3222=(32)111=9111
Vì 8<9 nên 8111<9111
Vậy 2333<3222
a) 2300 = 23 . 100 = ( 23 )100 = 8100
3200 = 32 . 100 = ( 32 )100 = 9100
Vì 8100 < 9100 nên 2300 < 3200
b) Tương tự
+)\(8^2=\left(2^3\right)^2=2^6\)
+)\(3^{200}=3^{2.100}=\left(3^2\right)^{100}=9^{100}\)
\(2^{300}=2^{3.100}=\left(2^3\right)^{100}=8^{100}\)
Vì \(9>8\Rightarrow9^{100}>8^{100}\)hay \(3^{200}>2^{300}\)
+)\(9^{20}=\left(3^2\right)^{20}=3^{40}\)
\(27^{13}=\left(3^3\right)^{13}=3^{39}\)
Vì \(40>39\Rightarrow3^{40}>3^{39}\)hay \(9^{20}>27^{13}\)
+)\(10^{20}=10^{2.10}=\left(10^2\right)^{10}=100^{10}\)
\(2^{100}=2^{10.10}=\left(2^{10}\right)^{10}=1024^{10}\)
Vì \(100< 1024\Rightarrow100^{10}< 1024^{10}\)hay \(10^{20}< 2^{100}\)
+)\(2^{161}=2^{4.40+1}=\left(2^4\right)^{40}.2=16^{40}.2\)
Vì \(13< 16\Rightarrow13^{40}< 16^{40}\)\(\Rightarrow13^{40}< 2^{161}\)
1) Áp dụng a/b < 1 <=> a/b < a+n/b+n (a,b,n thuộc N*)
a/b = 1 <=> a/b = a+n/b+n (a,b,n thuộc N*)
a/b > 1 <=> a/b > a+n/b+n (a,b,n thuộc N*)
+ Với a/b < 1 <=> a/b < a+1/b+1
+ Với a/b = 1 <=> a/b = a+1/b+1
+ Với a/b > 1 <=> a/b > a+1/b+1
2) lm tương tự bài 1
1) Trường hợp a cũng là nguyên duơng
Xét a<b và a>b.
Xét a<b trước, ta có:
1-a/b=(b-a)/a..............(1)
1-(a+1)/(b+1)=(b+1-a-1)/(b+1)=(b-a/(b+1...
Từ (1) và (2) ta thấy: (b-a)/a<(b-a)/(b+1) (vì hai phân số có cùng tử phân số nào mẫu lớn thì phân số đó nhỏ hơn). Mà (b-a)/a>(b-a)/(b+1) =>((a+1)/(b+1)<a/b
a. 2333 = (23)111= 8111
3222= (32)111= 9111
Thấy 8<9 nên 8111< 9111.
Vậy 2333 < 3222
b.\(\sqrt{8}\)+\(\sqrt{24}\)
8= 3+5= \(\sqrt{9}\)+\(\sqrt{25}\)
Thấy 9>8; 25>24 nên \(\sqrt{9}\)>\(\sqrt{8}\); \(\sqrt{25}\)>\(\sqrt{24}\)
Vậy \(\sqrt{8}\)+\(\sqrt{24}\)<8
c.Vì 4>3 và \(\sqrt{19}\)> \(\sqrt{15}\)nên 4+\(\sqrt{19}\)>\(\sqrt{15}\)+3
Vậy 4+\(\sqrt{19}\)> \(\sqrt{15}\)+3
b, 2300=23.100=[23]100=8100
3200=32.100=[32]100=9100
=> 8100 < 9100 . Vậy 2300 < 3100
so sánh
a) 3200và 2300
Ta có :
2300 = (23)100 = 8100
3200 = ( 32)100 = 9100
2300 < 3200
b) 912 và 268
Ta có :
912 = ( 93)4 = 7294
268 = ( 262)4 = 6764
912>268
a, Ta có:
\(3^{200}\) = \(\left(3^2\right)^{100}\) = \(9^{100}\)
\(2^{300}\) = \(\left(2^3\right)^{100}\)= \(8^{100}\)
Vì 8 < 9 => \(8^{100}\) < \(9^{100}\)
Hay \(3^{200}\) < \(2^{300}\)
b, Ta có:
\(9^{12}\) = \(\left(9^3\right)^4\) = \(729^4\)
\(26^8\) = \(\left(26^2\right)^4\) = \(676^4\)
Vì 729 > 676 => \(729^4\) < \(676^4\)
Hay \(9^{12}\) < \(26^8\)