Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) Quy đồng
2) Rút gọn
3) Phân số trung gian
4) So sánh với 1
5) Dùng phần thiếu , phần thừa
1 ) Quy đồng
2 ) Rút gọn
3 ) Phân số trung gian
4 ) So sánh với 1
5 ) Dùng phần thiếu , phần thừa
Số phàn tử:
\(2029-2021+1=9\)
Tổng dãy trên:
\(\left(2029+2021\right)\cdot\dfrac{9}{2}=18225\)
Số hạng là:
(2029-2021):1+1=9
Tổng là:(2029+2021).9:2=18225
Đáp số :18225
Chúc bạn học tốt nha
A = \(\dfrac{2022}{50^{10}}\) + \(\dfrac{2022}{50^8}\)
A = \(\dfrac{2022}{50^{10}}\) + \(\dfrac{2021}{50^8}\) + \(\dfrac{1}{50^8}\)
B = \(\dfrac{2023}{50^{10}}\) + \(\dfrac{2021}{5^8}\) = \(\dfrac{2022}{50^{10}}\) + \(\dfrac{1}{50^{10}}\) + \(\dfrac{2021}{50^8}\)
Vì: \(\dfrac{1}{50^{10}}\) < \(\dfrac{1}{50^8}\) nên \(\dfrac{2022}{50^{10}}\) + \(\dfrac{2021}{50^8}\) + \(\dfrac{1}{50^{10}}\) < \(\dfrac{2022}{50^{10}}\) + \(\dfrac{2021}{50^8}\) + \(\dfrac{1}{50^8}\)
Vậy A > B
\(A=\frac{1}{101}+\frac{1}{102}+\frac{1}{103}+...+\frac{1}{199}+\frac{1}{200}\)
Ta thấy các phân số \(\frac{1}{101};\frac{1}{102};\frac{1}{103};...;\frac{1}{198};\frac{1}{199}\)đều lớn hơn \(\frac{1}{200}\)
\(\Rightarrow A>\frac{1}{200}+\frac{1}{200}+\frac{1}{200}+..+\frac{1}{200}+\frac{1}{200}\)(có 100 số hạng \(\frac{1}{200}\))
\(\Leftrightarrow A>\frac{100}{200}\)
\(\Leftrightarrow A>\frac{1}{2}\)
Lời giải:
\(B=\frac{1}{4}+\frac{2}{4^2}+\frac{3}{4^3}+....+\frac{2021}{4^{2021}}\)
\(4B=1+\frac{2}{4}+\frac{3}{4^2}+...+\frac{2021}{4^{2020}}\)
\(4B-B=1+\frac{1}{4}+\frac{1}{4^2}+...+\frac{1}{4^{2020}}-\frac{2021}{4^{2021}}\)
\(3B=1+\frac{1}{4}+\frac{1}{4^2}+....+\frac{1}{4^{2020}}-\frac{2021}{4^{2021}}\)
\(12B=4+1+\frac{1}{4}+...+\frac{1}{4^{2019}}-\frac{2021}{4^{2020}}\)
\(9B=4-\frac{6067}{4^{2021}}<4\Rightarrow B< \frac{4}{9}< \frac{1}{2}\)
Ta có:
\(A=\frac{4-7^{2020}}{7^{2020}}+\frac{5+7^{2021}}{7^{2021}}\) và \(B=\frac{1}{7^{2019}}\)
Ta xét 2 trường hợp:
\(TH1:\frac{4-7^{2020}}{7^{2020}}=\frac{-7^{2020}+4}{7^{2020}}=-1+\frac{4}{7^{2020}}\)
\(TH2:\frac{5+7^{2021}}{7^{2021}}=1+\frac{5}{7^{2021}}\)
\(\Rightarrow\left(-1+\frac{4}{7^{2020}}\right)+\left(1+\frac{5}{7^{2021}}\right)\)
\(\Rightarrow\frac{4}{7^{2020}}+\frac{5}{7^{2021}}\)
\(Do:\)
\(\frac{4}{7^{2020}}>\frac{1}{7^{2019}}\)
\(\frac{5}{7^{2021}}>\frac{1}{7^{2019}}\)
Nên:\(\frac{4}{7^{2020}}+\frac{5}{7^{2021}}>\frac{1}{7^{2019}}\)
\(\Rightarrow A>B\)
\(A=\frac{5^{60}+1}{5^{61}+1}\)
\(5A=\frac{5(5^{60}+1)}{5^{61}+1}=\frac{5^{61}+5}{5^{61}+1}=\frac{5^{61}+1+4}{5^{61}+1}=1+\frac{4}{5^{61}+1}\) \((1)\)
\(B=\frac{5^{61}+1}{5^{62}+1}\)
\(5B=\frac{5(5^{61})+1}{5^{62}+1}=\frac{5^{62}+5}{5^{62}+1}=\frac{5^{62}+1+4}{5^{62}+1}=1+\frac{4}{5^{62}+1}\) \((2)\)
Từ 1 và 2 \(\Rightarrow1+\frac{4}{5^{61}+1}>1+\frac{4}{5^{62}+1}\)
\(\Rightarrow5A>5B\)
Hay \(A>B\)
Vậy : ...
a) \(x-\dfrac{3}{5}=\dfrac{4}{-10}\)
\(x=\dfrac{4}{-10}+\dfrac{3}{5}\)
\(x=\dfrac{-4}{10}+\dfrac{6}{10}\)
\(x=\dfrac{1}{5}\)
b) \(\dfrac{3}{x}-2=\dfrac{4}{x}+4\)
\(\dfrac{3}{x}-2+2=\dfrac{4}{x}+4+2\)
\(\dfrac{3}{x}=\dfrac{4}{x}+4\)
\(\dfrac{3}{x}=\dfrac{4x+4}{x}\)
\(3x=\left(4x+4\right)x\)
\(3x=5x\cdot x+4x\)
\(3x=x\left(5x+4\right)\)
\(3=5x+4\)
\(5x=-1\)
\(x=\dfrac{-1}{5}\)
A = 2019 \(\times\) 2021 + 2023
A = (2018 + 1).(2022 -1) + 2023
A = 2018.2022 - 2018 + 2023 > 2018.2022 - 2022
Vậy A > B
Cách 1: Nhìn qua là biết A > B :))
Cách 2: Giải cụ thể:
A = 2019 x 2021 + 2023
= 2018 x 2021 + 2021 + 2023 = 2018 x 2021 + 4044
B = 2018 x 2022 - 2022
= 2018 x 2021 + 2018 - 2022 = 2018 x 2021 - 4
⇒ A > B và lớn hơn: 4044 + 4 = 4048
\(A=2019\times2021=\left(2021-1\right)\times\left(2021+1\right)=2021^2-1< 2021^2=B.\)
sai mất rồi nhưng dù sao cũng cảm ơn bn nhé