Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
#)Giải :
Ta có :
\(A=\frac{2003\times2004-1}{2003\times2004}=\frac{2003\times2004}{2003\times2004}-\frac{1}{2003\times2004}=1-\frac{1}{2003\times2004}\)
\(B=\frac{2004\times2005-1}{2004\times2005}=\frac{2004\times2005}{2004\times2005}-\frac{1}{2004\times2005}=1-\frac{1}{2004\times2005}\)
Vì \(\frac{1}{2003\times2004}>\frac{1}{2004\times2005}\)
\(\Rightarrow A>B\)
+) \(A=\frac{2003\times2004-1}{2003\times2004}\)
\(=\frac{2003\times2004}{2003\times2004}-\frac{1}{2003\times2004}\)
\(=1-\frac{1}{2003\times2004}\)
+) \(B=\frac{2004\times2005-1}{2004\times2005}\)
\(=\frac{2004\times2005}{2004\times2005}-\frac{1}{2004\times2005}\)
\(=1-\frac{1}{2004\times2005}\)
+) Vì 2004 x 2005 > 2003 x 2004
=> \(\frac{1}{2004\times2005}< \frac{1}{2003\times2004}\)
=> \(1-\frac{1}{2004\times2005}>1-\frac{1}{2003\times2004}\)
Vậy B > A
\(\dfrac{2004\times2005+2006\times6-6}{2005\times1997+4\times2005}\\ =\dfrac{2004\times2005+\left(2005+1\right)\times6-6}{2005\times\left(1997+4\right)}\\ =\dfrac{2004\times2005+2005\times6+6-6}{2005\times2001}\\ =\dfrac{2005\times\left(2004+6\right)}{2005\times2001}\\ =\dfrac{2010}{2001}\\ =\dfrac{670}{667}\)
\(=\dfrac{2005^2-10}{2005^2-2005+2005-10}\)
\(=\dfrac{2005^2-10}{2005^2-10}=1\)
A=2003x2004-1/2003x2004
B=2004x2005-1/2004x2005
A= 1-2003x2004-1/2003x2004=1/2003x2004
B=1-2004x2005-1/2004x2005=1/2004x2005
Vì 1/2003x2004<1/2004x2005 => A>B.
K nhé