K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 3 2017

a) Tính √25 + √9 rồi so sánh kết quả với .

Trả lời: < √25 + √9.

b) Ta có: = a + b và

= + 2√a.√b +

= a + b + 2√a.√b.

Vì a > 0, b > 0 nên √a.√b > 0.

Do đó < √a + √b


3 tháng 4 2017

a) Tính √25 + √9 rồi so sánh kết quả với .

Trả lời: < √25 + √9.

b) Ta có: = a + b và

= + 2√a.√b +

= a + b + 2√a.√b.

Vì a > 0, b > 0 nên √a.√b > 0.

Do đó < √a + √b

1 tháng 5 2019

a ) \(\sqrt{\frac{49}{9}-\frac{4}{3}.\sqrt{5}}=\sqrt{5-2.\sqrt{5}.\frac{2}{3}+\frac{4}{9}}=\sqrt{\left(\sqrt{5}-\frac{2}{3}\right)^2}=\sqrt{5}-\frac{2}{3}\)

b ) \(\sqrt{\frac{64}{9}-\frac{2}{3}.\sqrt{7}}=\sqrt{7-2.\sqrt{7}.\frac{1}{3}+\frac{1}{9}}=\sqrt{\left(\sqrt{7}-\frac{1}{3}\right)^2}=\sqrt{7}-\frac{1}{3}\)

c ) \(\sqrt{\frac{79}{36}+\frac{2}{3}\sqrt{7}}=\sqrt{\frac{72}{36}+2.2.\frac{\sqrt{7}}{6}+\frac{7}{36}}=\sqrt{\left(2+\frac{\sqrt{7}}{6}\right)^2}=2+\frac{\sqrt{7}}{6}=\frac{12+\sqrt{7}}{6}\)

d ) \(\sqrt{\frac{45}{4}-\sqrt{11}}=\sqrt{\frac{44}{4}-\sqrt{11}+\frac{1}{4}}=\sqrt{11-\sqrt{11}+\frac{1}{4}}=\sqrt{\left(\sqrt{11}-\frac{1}{2}\right)^2}=\sqrt{11}-\frac{1}{2}\)

10 tháng 8 2018

So sánh:

\(a,\sqrt{25+9}\)và \(\sqrt{25}+\sqrt{9}\)

Ta có:

\(\sqrt{25+9}=\sqrt{34}< \sqrt{36}=6\) \(\left(1\right)\)

\(\sqrt{25}+\sqrt{9}=\sqrt{5^2}+\sqrt{3^2}=5+3=8\) \(\left(2\right)\)

Từ (1) và (2) \(\Rightarrow\sqrt{25+9}< \sqrt{25}+\sqrt{9}\)

\(b,\sqrt{25-16}\) và \(\sqrt{25}-\sqrt{16}\)

Tương tự:)

23 tháng 4 2017

a. Ta có : \(\sqrt{8}< \sqrt{9}\) ( vì 8< 9)

hay \(2\sqrt{2}< 3\)

\(\Rightarrow\) \(2\sqrt{2}+6< 3+6\)

hay \(2\sqrt{2}+6< 9\)

b. Ta có : \(\sqrt{6}>\sqrt{4}\) (vì 6 > 4 )

hay \(\sqrt{2.3}>2\)

\(\Rightarrow\) 2\(\sqrt{2.3}\) > 4

\(\Rightarrow\) 2 + \(2\sqrt{2.3}\) + 3 > 9

hay \(\left(\sqrt{2}+\sqrt{3}\right)^2\)> 9

\(\Rightarrow\) \(\sqrt{2}+\sqrt{3}>3\)

c. Ta có: \(\sqrt{80}>\sqrt{49}\) (vì 80>49)

hay \(4\sqrt{5}\) > 7

\(\Rightarrow\) 9 + \(4\sqrt{5}\) > 16

d. Ta có : \(2\sqrt{33}>2\sqrt{25}\) (vì 33> 25 ) hay \(2\sqrt{23}>2.5\)

\(\Rightarrow\) - \(2\sqrt{33}\) < - 2.5

\(\Rightarrow\) 11 - \(2\sqrt{11.3}\) +3 < 11- 2.5 +3

hay \(\left(\sqrt{11}-\sqrt{3}\right)^2\) < 4

\(\Rightarrow\) \(\sqrt{11}-\sqrt{3}< 2\)

30 tháng 7 2019

mẹo để làm bài nay là j hả bn

30 tháng 9 2019

a)1/7\(\sqrt{51}\)=\(\sqrt{\frac{51}{49}}\);1/9\(\sqrt{150}=\sqrt{\frac{150}{81}}=\sqrt{\frac{50}{27}}\)

\(\frac{51}{49}=1+\frac{1}{49}+\frac{1}{49}\);\(\frac{50}{27}=1+\frac{23}{27}>1+\frac{23}{36}>\)\(1+\frac{2}{36}=1+\frac{1}{36}+\frac{1}{36}\)

1/49<1/36 nên 51/49<50/27 =>1/7\(\sqrt{51}\)<1/9\(\sqrt{150}\)

b) \(\sqrt{2017}+\sqrt{2016}>\sqrt{2016}\)+\(\sqrt{2015}\)

=>\(\frac{1}{\sqrt{2017}+\sqrt{2016}}< \)\(\frac{1}{\sqrt{2016}+\sqrt{ }2015}\) <=> \(\sqrt{2017}-\sqrt{2016}< \sqrt{2016}\)-\(\sqrt{2015}\)

14 tháng 9 2020

a, 2020 lớn hơn

14 tháng 9 2020

a)\(\left(\sqrt{2019.2021}\right)^2=2019.2021=\left(2020-1\right)\left(2020+1\right)=2020^2-1< 2020^2\)

=> \(\sqrt{2019.2021}< 2020\)

b) \(\left(\sqrt{2}+\sqrt{3}\right)^2=5+2\sqrt{6}>5+2\sqrt{4}=5+2.2=9\)

=> \(\sqrt{2}+\sqrt{3}>3\)

c) \(9+4\sqrt{5}=4+4\sqrt{5}+5=\left(2+\sqrt{5}\right)^2>\left(2+\sqrt{4}\right)^2=\left(2+2\right)^2=16\)

=> \(9+4\sqrt{5}>16\)

d) \(\sqrt{11}-\sqrt{3}>\sqrt{9}-\sqrt{1}=3-1=2\)

=> \(\sqrt{11}-\sqrt{3}>2\)